

UM01010101 V1.00 Date: 2019/05/22

产品用户手册

类别	内容		
关键词	PWR1000L 线性型 可编程交流电源		
摘要	PWR1000L 线性型可编程交流电源电源用户手册		

修订历史

版本	日期	原因
V1.00	2019/02/21	创建文档

线性型可编程交流电源

目 录

1.	安全	须知		1
	1.1	苞	予示标示	1
	1.2	多	至全信息	1
		1.2.1	安全符号	1
		1.2.2	操作注意事项	2
		1.2.3	安装场所注意事项	3
		1.2.4	搬运产品时注意事项	4
		1.2.5	维护,检查和校准	
2.	产品	介绍		6
	2.1	P	WR1000L 简介	6
	2.2	电	9气特性	7
		2.2.1	输入特性	7
		2.2.2	输出特性	7
		2.2.3	测量功能	
		2.2.4	保护功能	
		2.2.5	通讯接口	
	2.3	Ð	「境特性	
	2.4	支	そ规特性	
	2.5	夕	\观尺寸	
	2.6	直	ī板介绍	
		2.6.1	前面板介绍	
		2.6.2	操作面板介绍	
		2.6.3	显示面板介绍	
		2.6.4	后面板介绍	19
3.	安装	和使用]准备	21
4.	基本	操作		
	4.1	斩	计出电压模式设置	
	4.2	斩	计出档位切换	
	4.3	斩	计出电压值设置	
	4.4	斩	计出频率设置	
	4.5	斩	计出相位角设置	
	4.6	斩	出打开/关闭操作	
	4.7	л Е	L示模式设置	
	4.8	铚	挂盘锁	
5.	高级	操作	(按菜单索引)	
	5.1	参	》数设定	
		5.1.1	限定参数	
		5.1.2	报警参数	
		5.1.3	高级设定	
	5.2	沥	医形库输出	
		5.2.1	波形库编辑	

	5.2.2	面板编辑波形库示例	42
	5.2.3	任意波形编辑输出	43
	5.2.4	波形库波形选择输出	43
	5.2.5	常规输出参数与控制定义	43
5.3	步防	〉(STEP)输出	44
	5.3.1	步阶参数设定	44
	5.3.2	步阶(STEP)功能模拟渐变电压演示示例	45
5.4	线路	各仿真输出	48
	5.4.1	仿真功能参数设定	48
	5.4.2	仿真功能模拟电压骤升示例	50
5.5	模扎	以序列输出	54
	5.5.1	模拟序列参数设定	54
	5.5.2	一种序列输出编辑方式	56
	5.5.3	模拟序列输出示例	56
5.6	使月	月测量功能	63
	5.6.1	测量参数设定	63
	5.6.2	高次谐波分析	64
	5.6.3	FFT	65
5.7	系约	充设置	66
	5.7.1	系统主要参数(MAINTAIN)	66
	5.7.2	使用存取功能	67
	5.7.3	系统版本(VERSION)	71
	5.7.4	错误提示(EEROR)	71
	5.7.5	日期时间设定	71
5.8	三札	目输出与多机并联	73
	5.8.1	三相输出连线与配置	74
	5.8.2	多机并联输出	77
6. 通讯	,接口		.79
6.1	GPI	B 接口	79
	6.1.1	面板组件	79
	6.1.2	GPIB 接口特性	79
	6.1.3	GPIB 配置	79
6.2	RS2	32 接口	80
	6.2.1	面板组件	80
	6.2.2	RS232 接口特性	80
	6.2.3	RS232 配置	80
6.3	USI	3 接口	81
	6.3.1	面板组件	81
	6.3.2	USB 接口特性	81
	6.3.3	USB 配置	82
6.4	Ethe	ernet 接口	82
	6.4.1	面板组件	82
	6.4.2	Ethernet 接口特性	82
	6.4.3	Ethernet 配 <u></u>	82

ZLG 致远电子

PWR1000L

线性型可编程交流电源

7.	通讯	接口		
	7.1	GP	IB 接口	
		7.1.1	面板组件	
		7.1.2	GPIB 接口特性	
		7.1.3	GPIB 配置	
	7.2	RS	232 接口	85
		7.2.1	面板组件	85
		7.2.2	RS232 接口特性	
		7.2.3	RS232 配置	
	7.3	US	B 接口	
		7.3.1	面板组件	
		7.3.2	USB 接口特性	
		7.3.3	USB 配置	
	7.4	Eth	ernet 接口	
		7.4.1	面板组件	
		7.4.2	Ethernet 接口特性	
		7.4.3	Ethernet 配置	
8.	保护	功能与	报警识别	90
	8.1	硬作	件报警与异常处理	
	8.2	输出	出报警与异常处理	
	8.3	软作	件报警与异常处理	
	8.4	警打	段清除	
9.	免责	声明		

1. 安全须知

本产品的使用涉及到高压,为防止电击或其它危险造成的人员伤亡,避免引起火灾、产 品故障等事故或者异常情况,在安装、使用或维修本产品之前,请务必仔细阅读并完全理解 "安全须知"章节的相关内容。

为保证您能正确安全地使用本产品,请务必遵守以下注意事项。因违反以下注意事项操作本产品所引起的损伤,广州致远电子有限公司概不承担任何责任。

1.1 警示标示

注意符号表示存在危险。提示用户对某一过程、操作方法或类似情况进行操作时, 如果不能正确执行或遵守规则,则可能对产品造成损坏。在完全阅读和充分理解所 要求的注意事项之前,请不要继续操作。

警告符号表示存在严重危险。提示用户对某一过程、操作方法或类似情况进行操作时,如果不能正确执行或遵守规则,则可能造成人身伤害甚至死亡。在完全阅读和 充分理解**警告**所要求的事项之前,请务必停止操作。

1.2 安全信息

无视使用说明书操作方法的使用操作,可能会损坏本产品所具备的保护功能。

使用本产品,需由具有电气知识的人员在理解使用说明书的内容并确认安全之后方可使 用。如果操作人员不懂电气知识,有导致人身事故的可能,请务必在具备电气知识的人员的 监督指导之下使用。

请勿将本产品用于其规定以外的用途,本产品不是为一般家庭和消费者而设计的。

请勿禁用电源线的安全接地功能。

请勿按照非本手册指定方式使用本产品。

如果遇到故障,请勿擅自更换零件,或者擅自对产品进行调整,请联系广州致远电子有限公司进行处理。

1.2.1 安全符号

可编程交流电源安全符号如表 1.1 所示。

表 1.1 PWR1000L 可编程交流电源安规符号图

	小心, 危险; 告诉使用者该处有【危险】【警告】【注意】的符号或者相 关内容。在本产品上标有该符号时,请参阅使用说明书中的相关章节。
4	小心,电击危险;此处涉及或者存在高压,如果不慎触摸,又导致触电 死亡或者重伤的危险。如果需要触摸的话,请确认安全之后再操作。
CE	CE认证

产品用户手册

	保护地端子
	ON (电源)
\bigcirc	OFF(电源)
	直流电(DC)
\sim	交流电(AC)
\geqslant	直流电(DC)和交流电(AC)
X	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	此符号表示在所示的时间段内,危险或有毒物质不会在正常使用中泄漏 或造成损害,该产品的使用寿命为十年。在环保使用期限内可以放心使 用,超过环保使用期限之后则应进入回收循环系统。

1.2.2 操作注意事项

在本产品操作的各个阶段,必须遵循以下的安全注意事项。 人身安全与设备保护注意事项:

- 接线之前。在使用本产品之前,请检查电源是否符合本产品的额定输入值;请务必使用在额定输入电压范围以内的电源;在连接本产品之前,请观察本产品上的所有标记;
- 保护接地。本产品属于 IEC 标准 Safety Class I 仪器(配备有保护导体端子的仪器)。 在开启电源之前,请确认连接保护接地,否则请勿继续使用本产品;
- 保护接地的必要性。勿切断保护接地端子的连接,否则将会引起潜在电击危险,并可能对人体带来伤害;
- **勿在易燃易爆环境下操作本产品。**请勿在含有易燃易爆液体或气体的环境里使用本

产品用户手册

ZLG 致远电子

产品;

- 请使用匹配的电源线和负载线。连接电源和负载请务必使用匹配的电源线和负载 线,所用电源线和负载线的容量必须能够承受最大输出电流而不会发生过热。切不 可裸线连接端子。勿将物品摆放在电源线和负载线上,并使电源线和负载线远离热 源。电源线和负载线有破损时,请务必更换;
- 操作。一旦发现本产品发生故障或者异常,请立即停止使用,并切断本产品的供电 电源;
- 请勿拆卸本产品的机箱外壳。本产品内部有高压,非常危险,请勿拆卸本产品的机
 箱外壳。请勿自行在本产品上安装替代零件,或执行任何未经授权的修改;
- 切断电源。长时间不使用本产品时。请切断本产品的电源,并将本产品的电源线从供电处断开。

 请保证本产品的通风散热。请勿阻挡本产品的散热通风孔,保证本产品的通风散热, 否则会导致本产品不能正常工作;

1.2.3 安装场所注意事项

安装本产品时,注意事项如下:

- 环境温度和环境湿度。环境温度: 5~40 ℃,环境湿度: 20~80%RH。
- 请务必在室内使用;本产品的安全保证,是按照在室内使用而设计制造的;
- 请勿在易燃环境下使用,有引起爆炸和火灾的危险。在靠近酒精和稀释剂等易燃物的附近以及周围请勿使用;
- 请避免将本产品放在高温、阳光直射的地方。</mark>请勿将本产品安装在发热和取暖设备 的附近,以及温度剧烈变化的地方;
- 请避免安装在高湿的地方。请勿安装靠近热水器、加湿器、自来水管道等高湿的地方;
 - **即使在工作温度范围以内也有结露的可能。**发生该种情况时,在完全干燥之前, 请勿使用本产品;
- 请勿将本产品放置在腐蚀性的环境中。请勿将本产品放置在腐蚀性环境或者硫酸弥漫的环境中。否则将引起本产品内部导体的腐蚀或者连接器接触不良,进而导致故障或引起火灾;
- 请勿将本产品放置在灰尘很多的地方。附着的灰尘会引起触电或者火灾;
- 在通风不良的地方,请勿使用本产品。使用风扇进行强制空气冷却的产品,通过后 面板的通风孔排除热量;
 - 如果散热孔周围通风不良是引起火灾的原因。通风孔与墙壁之间的距离应该在 20cm 以上,并且后面板 20cm 以内,请勿放置任何物品;

产	品	用	户	手	册
---	---	---	---	---	---

- 请勿在本产品上放置任何物品。放置重物是引起故障的原因;
- 请勿将本产品放置在倾斜的表面上或者有震动的地方。
 坠落、颠倒时引起本产品 损坏或者人员受伤的原因;
- 在周围有强磁场或者电场的地方,或者输入电源的波形变形以及噪声严重的地方, 请勿使用本产品。有引起本产品发生误动作的可能;
- 请勿在高敏感测试仪或者接收设备的附近使用本产品。本产品产生的噪声可能会 影响这些设备;
- 请在工业生产环境中使用本产品。在住宅区使用本产品有引发干扰的可能。在此种 情况下,为了防止干扰无线广播和电视信号的接收,应根据用户的需要采取特殊措 施以减少电磁波辐射。

1.2.4 搬运产品时注意事项

移动或者运输本产品时,注意事项如下:

- 搬运本产品时。请将电源开关切换为 OFF;请切断本产品的电源,并除去电源线
 和负载线;如果电源开关在 ON 的状态下移动本产品,会引起触电或者损坏本产品。
 - 请勿一个人搬动产品。由于产品的重量超过 20kg, 必须两个人以上进行搬运 作业;
 - 在倾斜或者高低不平的地方搬运本产品时,请采取增加搬运人数等安全措施;
- 运输时,请务必使用专用的包装材料。不使用专用的包装材料,是导致运输中震动 或者坠落等损坏的原因。

1.2.5 维护,检查和校准

为保证本产品的性能以及安全性,建议定期实施维护和检查。

- 为了防止触电事故,在进行维护和检查之前,请将电源开关切换为 OFF,并切断 供电电源;
- 请定期检查电源线和负载线外层是否有破裂或者断线;

- 清洁液晶屏幕。液晶显示器极易受损,注意不要让锋利物品损伤其表面。另外,请 避免振动和碰撞;
 - 清洁液晶屏表面时,用水将中性洗剂稀释,请用沾有该洗剂的软布轻轻擦拭, 请勿使用稀释剂或者汽油等挥发性化学药剂;
- 清理机箱污迹时。清理机箱的污渍时,请切断本产品的电源,使用干净柔软的干布 轻轻擦拭。请勿使用稀释剂或者汽油等挥发性化学药剂,可能引起变色或变形。请 勿清洁本产品内部;

```
产品用户手册
```


本产品经过严格校准和检定后出厂。为了保证其性能长期稳定,建议定期进行校准。
 实施校准时,请联系广州致远电子有限公司进行处理。

 本产品内部的调整或者修理,由本公司的技术人员实施。需要调整或者修理时, 请与购买本产品的代理商/经销商联系或者联系广州致远电子有限公司进行处理。

2. 产品介绍

2.1 PWR1000L 简介

图 2.1 PWR1000L 线性型可编程交流电源

PWR1000L 是广州致远电子有限公司开发的线性型可编程交流电源。PWR1000L 线性型可编程交流电源是一种高性能的电源,提供了电压和频率可调的正弦信号,可以作为纯净的交流供电电源。PWR1000L 线性型可编程交流电源可以具备多种输出模式:交流(AC),直流(DC)和交流+直流(AC+DC)。可编程交流电源具备宽频输出能力,高性能的产品输出频率范围可达到 0.1Hz~10KHz,并提供了任意波形输出功能,可以满足不同行业的需求。

▼ 功能特点

- 高性能线性功放技术,保证输出电压的高稳定、低噪声和低失真度;
- 输出电压范围: AC: 0~300V; DC: 0~424V;
- 输出模式: DC, AC, DC+AC;
- 可调频率输出: 0.1Hz~10KHz;
- 输出功率: 1000VA;
- 全方面的保护特性(OV, OC, OP, OT);
- 任意波形输出功能;
- 提供辅助 IO 控制功能;
- 输出参数测量功能:电流、电压和功率测量,谐波分析;
- 4.3 英寸 LCD 显示,操作简单,显示直观;
- 良好的操作性:提供丰富、快捷的功能按键;
- 提供同步接口,支持多机并联输出;
- 标配 RS232、USB、Ethernet 和 GPIB 接口,可以快速、方便地连接到 PC;
- 配备有 PC 软件,可以用于远程控制;
- 支持多种测试标准。

▼ 应用范围

- AC 供电的电子产品
- AC/DC 电源, UPS, 稳压器
- 航空航天电子
- 测试被测设备在不同交流电压、波形失真等条件下的状况
- ▼ 典型应用
- 用户需要模拟全球不同的供电状态,如 110V/220V, 50Hz/60Hz
- 研发需要验证一个 PC 电源在不同电压和频率的供电环境的的适应情况,如 50/60Hz, 127/253V, 103/207V
- 模拟供电网络出现波动、瞬间中断等异常情况,对用电设备特性进行测试和评估

```
产品用户手册
```


PWR1000L 线性型可编程交流电源

2.2 电气特性

2.2.1 输入特性

表 2.1 交流输入

项目	规格		
相数	单相		
电压	$100 \sim 240 V \pm 10\%$		
频率	47~63Hz		
最大电流	20A Max		
效率	>56%(典型值)@阻性负载满载		
功率因数	>0.97 @满载输出		

2.2.2 输出特性

表 2.2 交流输出

AC Output				
	项目		规格	
功率(VA)			1000VA	
相数			单相	
中压 (输出 L 档位	0~150V	
电压(rms)	10	输出 H 档位	0~300V	
由资 (mms)	AC	输出L档位	10A	
电视(rms)		输出 H 档位	5A	
最大可重复峰位	直电流	•	最大电流的3倍	
负载功率因数			0~1(超前或滞后)	
输出频率			0.1Hz~10KHz	
	0.100%@阻挫	存	0.2% FS (≤1KHz)	
贝我师童平	贝轼调整平 0~100%@阻性贝轼		(0.2%+0.05% /KHz) F.S. (1KHz~10KHz)	
线性调整率 10% Line			0.1% FS	
DC 偏移			<20mV	
	1~500Hz		0.2%	
谐波失真	<500Hz~1KHz		0.3%	
	<1KHz~10KHz		1%+0.2%/KHz	
	电压		100mV	
		0.1Hz~100Hz	0.01 Hz	
输出分辨率	频率	100~1KHz	0.1 Hz	
		1KHz~10KHz	1 Hz	
	相位		0.1°	
	电压	≤1KHz	$\pm (0.3\% + 0.6V)$	
设定精度	(%输出+偏移) 1KHz~10KHz		±(0.3% + 0.6V+0.2%/KHz)	
@23°C±5°C	频率(%输出+	偏移)	\pm (0.01% +0.01Hz)	
	相位		±1°	
			1	

<u>产品用户手册</u>

线性型可编程交流电源

响应时间

60uS@测试条件

表 2.3 直流输出

AC+DC/DC Output				
	项目		规格	
功率(W)			700W	
	DC	输出L档位	0~212V	
由压(mma)	DC	输出 H 档位	0~424V	
电压(fills)		输出L档位	0~150V	
	AC+DC	输出 H 档位	0~300V	
县十山法 (mmg)	DC	输出L档位	7A	
取入电视(IIIIS)	AC+DC	输出 H 档位	3.5A	
最大可重复峰值电流			最大电流的3倍	
负载调整率	负载调整率 0~100%		0.2% F.S.	
线性调整率	线性调整率 10% Line		0.1% FS	
输出分辨率	电压		100mV	
设定精度		\$\$\$ 山 (信我)	+(0.20% + 0.130)	
@23°C±5°C	屯ഥ (%)	間山土洲初夕ノ	$\pm (0.5\% \pm 0.1 \text{V})$	
纹波(RMS) 5Hz~1MHz 范围		Hz 范围	<300mVRMS	

输出电压一电流描述

交流模式下,150V 档位输出电压在 100VRMS 以内时可以输出最大额定电流 10ARMS; 300V 档位输出电压在 200VRMS 以内时可以输出最大额定电流 5ARMS。

直流模式下,150V档位输出电压在 100VDC 以内时可以输出最大额定电流 7ADC;300V 档位输出电压在 200VDC 以内时可以输出最大额定电流 3.5ADC。

输出频率—电流率描述

如何获取额定输出电流值,需要根据设定电压和额定功率来确定,对于交流输出,还需要考虑输出频率的影响,PWR1000L的输出频率范围为0.1Hz~10kHz。

频率范围	输出电流率/功率	描述
40Hz ~ 1000Hz	100%额定电流输出	电流满额输出
0.1Hz ~ 1Hz	44%额定电流输出	电流降额输出
1Hz ~ 40Hz	每降低 1Hz,则降低 1.44%	频率越低,允许输出越低

表	2.4	输出频率与输出功率关系一	·览表

产	品	用	户	手	册	
---	---	---	---	---	---	--

	降低额定功率	
1000Hz ~ 5000Hz	每增加100Hz,则降低1%额定功率	频率越高,降额使用
>5000Hz ~ 10000Hz	50%额定功率输出	AC 模式: 500VA, DC 模式: 350W

例 1 输出 115V (150V 档位), 输出频率为 50Hz

获取额定输出电流值:输出 115V(150V 档位),输出频率为 50Hz
 设定 额定功率 P=1000VA

最大输出电流
$$I_{out} = \frac{P}{V_{out}}$$

150V 档位:当 V_{out} ≤ 100V, I_{out} = 10ARMS; V_{out}>100V, I_{out} = $\frac{P}{V_{out}}$;

$$I_{out} = \frac{P}{V_{out}} = \frac{1000}{115} = 8.70 \text{ARMS}$$

占额定电流的百分比: I_{out} % = $\frac{1000}{115 \times 10} \approx 87\%$ (a)

2) 在 50Hz 输出频率下得到电流输出百分比为: 100%

(b)

由于(a) < (b),所以输出额定电流受(a)的限制。因此最大输出电流百分比为87%。 对于 PWR1000L,100%比例的输出电流为10A(150V档位),那么在87%的比例下的输出电流 为10*0.87=8.7[A]。

150V 档位	输出电流百分比(%)		持续输出电流[A]
输出电压: 115V	87 (a)	(a) < (b)	10 \ 0 97 9 7
输出频率: 50Hz	100 (b)	取较小值 (a)	10 × 0. 8/= 8.7

例 2输出 240V (300V 档位),输出频率为 15Hz

获取额定输出电流值:输出 240V (300V 档位),输出频率为 15Hz
 额定功率 P=1000VA

最大输出电流
$$I_{out} = \frac{P}{V_{out}}$$

300V 档位: 当 V_{out} ≤ 200V, I_{out} = 5ARMS; V_{out} > 200V, I_{out} = $\frac{P}{V_{out}}$;

$$I_{out} = \frac{P}{V_{out}} = \frac{1000}{240} = 4.17 \text{ARMS}$$

产品用户手册

线性型可编程交流电源

占额定电流的百分比:
$$I_{out}$$
% = $\frac{1000}{240 \times 5} \approx 83\%$ (

 $[100\% - (40-15) \times 1.44\%] = 64\%$

由于(a)>(b),所以输出额定电流受(b)的限制。因此最大输出电流百分比为64%。 对于 PWR1000L,100%比例的输出电流为5A(300V档位),那么在64%的比例下的输出电流为 5*0.64=3.2[A]。

 300V档位
 输出电流百分比(%)
 持续输出电流[A]

 输出电压: 240V
 83 (a)
 (a) > (b)
 5×0.64=3.2

 输出频率: 15Hz
 64 (b)
 取较小值 (b)
 5×0.64=3.2

例 3 PWR1000L 输出 240V (300V 档位),输出频率为 3000Hz

获取额定输出电流值:输出 240V (300V 档位),输出频率为 3000Hz 频率>1000Hz,额定功率降额,每增加 100Hz,则降低 1%额定功率:额定功率 P= 1000VA× (100%-20×1%)=800VA

最大输出电流 $I_{out} = \frac{P}{V_{out}}$

300V档位: 当 $V_{out} \le 200$ V, $I_{out} = \frac{800}{200} = 4$ ARMS; $V_{out} > 200$ V, $I_{out} = \frac{P}{V_{out}}$;

 $I_{out} = \frac{P}{V_{out}} = \frac{800}{240} = 3.33 \text{ARMS}$

(a)

(b)

2.2.3 测量功能

规格 项目 AC 0~300Vrms 量程 DC 0~440Vdc 电压 分辨率 0.01V 0~1KHz: 0.2%+0.2%F.S 测量精度:±(%输出+%量程) 1KHz~10KHz: 0.2%+0.2%F.S.+0.2%/KHz 量程 0~40A 分辨率 0.01A 电流 0~500Hz: 0.4%+0.3%F.S. 测量精度:±(%输出+%量程) 500Hz~10KHz: 0.4%+0.3%F.S.+0.5%/KHz 量程 0~10KHz 频率 分辨率 0.01Hz 测量精度: ±(%输出+偏移) 0.1%+0.01Hz 量程 0~1000VA 分辨率 0.1VA 功率 0~500Hz: 0.4%+0.4%F.S 测量精度:±(%输出+%量程) 500Hz~10KHz: 0.4%+0.4%F.S.+0.5%/KHz

表 2.5 常规测量

表 2.6 谐波测量

	项目	描述
电压	测量精度: ±(%输出+偏移)	0.5%+0.2%F.S.+0.2%/KHz
电流	测量精度: ±(%输出+偏移)	0.5%+0.4%F.S.+0.2%/KHz
	基波频率	谐波次数
垢玄	10~150Hz	0~99
<u></u> 须平	150Hz~500Hz	0~63
	500~1000Hz	0~34

注: 精度测量条件: 温度: 23±5°C。湿度: 30[~]75%RH。

2.2.4 保护功能

表 2.7 保护功能

项目	功能描述
输入过流	触发断路器强制切断输入电流
输入过压浪涌	输入浪涌 符合 IEC 61326 Class A 标准
输入过压	自动触发软件关闭输出或者内部保险管强制切断输入
输入欠压	自动关闭机器输出并进行输入欠压提示
输出过流	自动进入恒流模式或关闭输出
输出短路	峰值电流和有效值电流限制,强制关闭输出,并进行过流提示
输出过压	自动关闭机器输出并进行输出过压提示
输出过功率	自动关闭输出并进行输出过功率提示
温度保护	自动关闭输出并且进行风冷散热

2.2.5 通讯接口

项目	参数描述
通讯接口	GPIB、100Mbit LAN、RS-232、USB1.1 Device、AUX

2.3 环境特性

表 2.8 环境特性

项目	参数描述	
工作温度	0~40°C	
存储温度	-10~60°C	
湿度	20%~80% R.H., 无结水	
海拔	<2000m	
场所	室内使用	

线性型可编程交流电源

2.4 安规特性

表 2.9 安规特性

常规特性			
	输入-外壳		
绝缘电阻	输出-外壳	DC500V, 30M Ω以上	
	输入-输出		
	输入-外壳		
耐压	输出-外壳	AC1.5KV、1 分钟	
	输入-输出		
安全		IEC 61010-1、EN 61010-1, Class I 污染等级 2	
EMC		IEC 61326 Class A	

2.5 外观尺寸

图 2.5 外观图

图 2.6 前视图和后视图

<u>产品用户手册</u>

图 2.7 顶视图和侧视图

表 2.10 外观尺寸

项目	规格
机箱	3U
尺寸	长×宽×高: 585.00mm×425.00mm×132.80mm
里	约 27KG

注:表 2.10 外观尺寸 表示电源整机外壳尺寸。

产品用户手册

线性型可编程交流电源

- 2.6 面板介绍
- 2.6.1 前面板介绍

图 2.8 PWR1000L 前面板

编号	名称	功能	参照
1	电源开关	电源的 ON/OFF 开关	
2	输出键	输出的 ON/OFF 按键	
3	USB 端口	USB 设备存储装置接口	
4	进风口	内部散热进风口	
5	操作/显示面板	人机交互界面	

2.6.2 操作面板介绍

产品用户手册

图 2.9 PWR1000L 操作面板

编号	名称	功能	参照
1	LCD 液晶显示屏	显示各种设定值、实际输出值等信息	
2	辅助功能键	与显示器显示出的菜单对应的功能按键	
	菜单键	菜单选择与设置	
	Esc	退出当前设置	
3	Home	返回主页	
	Menu	菜单选择	
	Shift	选择上档功能	
	数字键	直接输入数字	
	CLR/Alarm	数字退格/清除警报	
	./-	小数点/—	
	0/Lock	数字 0/锁定键盘	
	1/Store	数字 1/存储当前输出数据	
	2/Pause	数字 2/暂停当前操作	
4	3/Continue	数字 3/继续执行暂停的操作	
	4/Limit	数字 4/限定极限值	
	5/Config	数字 5/配置系统	
	6/Reset	数字 6/复位功能	
	7/List	数字 7/设置序列输出	
	8/Step	数字 8/设置步阶信号输出	
	9/Sim	数字 9/设置任意波形输出	
5	Remote	远程连接显示与取消	
6	Enter	数字输入完毕或功能选择完毕进行确认	
	功能键	设置输出电参	
	V/Phase	设置输出电压/相位	
7	F/Wave	设置输出频率/波形	
	Range/ (AC/DC)	设置量程/(AC/DC/AC+DC)模式选择	
8	组合方向滚动旋钮	上下左右选择旋钮	

<u>产品用户手册</u>

线性型可编程交流电源

2.6.3 显示面板介绍

图 2.10 PWR1000L 显示面板

项 目	编号	名称	功能	参照
	1	输出标志	指示电源输出状态:关/开	
	2	档位标志	指示当前可输出量程: 150V/300V	
	3	模式标志	指示当前可输出模式: AC/DC/ACDC	
状	4	负载率标志	指示当前负载状态	
态标	5	暂停标志	指示编程输出功能时,暂停/停止标志	
志	6	联机标志	指示多机并联时,本机状态(功能保留)	
栏	7	输出阻抗标志	指示输出阻抗功能	
	8	外部通信标志	产品使用外部 DDS 源或外部 DC 参考控制输 出电压	
	9	通信接口标志	当前正在激活的通信接口	
辅助功能栏	10	辅助功能按键对质	立的功能标志	
信	11	显示各种设定信息	息和测量信息	

产品用户手册

线性型可编程交流电源

息料	12	USB 激活标志	指示是否有 USB 存储设备插入	
1=	13	键盘锁标志	指示激活键盘锁功能	
	14	警告标志	指示机器某保护机制被激活	

2.6.4 后面板介绍

编号	名称	功能	参照
1	GPIB 接口	GPIB 通信接口	
2	RS232 接口	RS232 接口	
3	USB 接口	USB2.0 从机接口	
4	ETHERNET 接口	网络接口	
5	LOCK/CLOCK	三相同步信号连接接口	
6	系统接口	多机并联接口(主从机)	
7	AUX 输入接口	 辅助 IO 输入接口,定义如下(数字对应图中引脚编号): AUX_IN_3-AUX_GND (辅助 IO 地) AUX_IN_4-POWER_ON/OFF (功能暂未开放) AUX_IN_5-SEQUENCE_CTR (控制波形编程执行) AUX_IN_6-INHIBIT_REMOTE (功能暂未开放) AUX_IN_7-ALARM_CLR (清除电源报警,上升沿有效) AUX_IN_8-OUTPUT_ON/OFF (控制电源常规输出, 上升沿关闭输出,下降沿开启输出) 	
8	AUX 输出接口	辅助 IO 输出接口,输出电源状态,定义如下(数字对	

<u>产品用户手册</u>

		应图中引脚编号):	
		AUX_OUT_1-TRIGGER_IN (功能暂未开放)	
		AUX_OUT_2-AUX_GND (辅助 IO 地, 输入脚)	
		AUX_OUT_3-TRIGGER_OUT (编程波形触发输出信号)	
		AUX_OUT_4-RANGE_STATUS(0: 高量程、1: 低 量程)	
		AUX_OUT_5 – BUSY_STATUS (0: 电源忙、1: 电源 空闲)	
		AUX_OUT_6-CL_OL_STATUS (功能暂未开放)	
		AUX_OUT_7-ALARM_STATUS (0: 电源正常、1: 电源告警)	
		AUX_OUT_8-OUTPUT_STATUS (0: 输出开启、1: 输出关闭)	
-		输出规格:	
9	输出接口	150VAC/300VAC、0-1000Hz、10A/5A;	
		212VDC/424VDC、10A/5A	
10	远端反馈接口	直接将负载电压连接到产品内部输出电压反馈端,当输 出负载接线较长和线压降较大时使用	
11	散热窗口	产品系统散热	
12	AC 电源供电接口	供电规格: 85VAC-265VAC、47-63Hz	

3. 安装和使用准备

- 本产品属于 IEC 标准 Satety Class I 仪器 (配备有保护导体端子的仪器)。为了防止触电, 请务必接地。
- 请将保护导体的终端接地。
- 请参考本产品的最大输入电流,选择连接到配电盘的短路器的短路电流。

- AC 电源线的电压失真严重时,将引起故障发生。不能连接到发电机等设备。
- 为保证 POWER 开关可以随时进行关断操作,请将 POWER 开关周围留有足够的空间。
- 在本产品的内部,根据输入端的极性连接等保护电路,连接时请务必选择颜色一样的电 线和输入端 (GND、N、L)。

电源线的连接

- Ⅰ.确认连接的 AC 供电线路与本产品的额定输入是否一致
- 2. 确认 POWER 开关已经处于 OFF 状态

图 3.1 OFF 状态的 POWER 开关

3. 用螺丝刀卸下 AC 端子接线台的金属保护壳,卸下端子塑料保护壳

线性型可编程交流电源

图 3.2 接线台

4. 电源线连接到后面板的 AC 输入口。按照接线台上的标称,连接 GND、N 和 L 电源线 线

图 3.3 AC 端口接线

5. 安装好装塑料保护壳、金属保护壳

图 3.4 输入 AC 接线台

6. 将电源线连接到供电电源

图 3.5 接电源

NOTE1:与AC连接时,请使用附带的电源线。

NOTE2:本产品不附带电源线,购买时可选购输入电源线的选购件。

打开/关闭电源(POWER ON/OFF)

NOTE 启动 PWR1000L 时,输出键状态默认为关闭。再次启动交流电源时,交流电源 会记忆上次设置的输出设定值。

- Ⅰ. 检查确认 POWER 开关已经处于 OFF 状态
- 2. 检查确认 AC 输入端口、OUTPUT 输出端口没有其他金属物品
- 3. 拨动电源(POWER)开关,掷于 ON(|)一侧,启动交流电源,显示器初始化,显示 交流电源基础信息、蜂鸣器长鸣一声,启动成功

图 3.6 初始化错误界面

上图为启动失败显示界面,红色字体说明启动异常: FPGA 初始化失败。

4. 拨动电源(POWER)开关,掷于 OFF (O) 一侧,即可关闭交流电源

连接负载

产品用户手册

● 禁止带电操作。在进行 OUTPUT 输出端子台接线操作时,请务必确认 POWER 开关 处在 OFF (|)端,拔下电源线以切断输入端的供电。

● 负载连接的电线的直径应该满足输出电流的容量。

1. 检查确认交流电源输入电源已经断开连接

图 3.7 切断电源

2. 检查确认 POWER 开关已经处于 OFF 状态

图 3.8 OFF 状态的 POWER 开关

3. 卸下 OUTPUT 端子台的保护外壳

图 3.9 卸载接线台

产品用户手册

PWR1000L

4. 将准备好的负载电线连接到 OUTPUT 端子台。负载带有接地端子时,请务必连接到输出端子台的 GND 端,使用的电线的直径必须满足负载功率要求

图 3.10 安装输出电源线

5. 安装好 OUTPUT 端子台塑料保护盖和金属保护壳

图 3.11 安装输出端口接线台

产品用户手册

4. 基本操作

本章节主要介绍 PWR1000L 可编程交流电源的基本操作,主要包含以下几个方面内容

- ▶ 输出电压模式设置
- ▶ 输出档位切换
- ▶ 输出电压值设置
- ▶ 输出频率设置
- ▶ 输出相位角设置
- ▶ 输出打开/关闭操作
- ▶ 显示模式设置
- ▶ 键盘锁

4.1 输出电压模式设置

产品有3种电压输出模式。分别为:AC模式、DC模式、AC+DC模式。电源输出开启 时,不允许模式切换。

输出电压模式设定步骤

操作:按 Shift->(AC/DC),如图 4.1 模式选择界面。

图 4.1 模式选择

旋转组合旋钮,选定需要输出电压模式,或按下屏幕下方的F1、F2、F3按键直接选定 电压输出模式。然后按下"确定"键进行确认。

模式介绍

● AC 模式

● DC 模式

模式标志高亮。如图 4.3 DC 模式,。

交流输出模式。VAC 和频率设定值高亮, AC 模式标志高亮。如图 4.2 AC 模式所示。

图 4.3 DC 模式

产品用户手册

线性型可编程交流电源

● AC+DC 模式

交直流输出模式。输出的交流电压波形 上叠加直流偏置。VAC、VDC 和频率设定值 为亮色。AC/DC 模式标志高亮。如图 4.4 AC+DC 模式所示。

	100.0	0.5 v vrms
	150.0	0 0 A Arms
	1000.0 FRQ	0.0 VA S
Ra TOCAL SAV	E RECALL	NORM

图 4.4 AC+DC 模式

按下"Range"按键,直接按屏幕下方的

0.5 v vrms

0.0 A Arms

0.0 VA 🗔

(F5)

(F4)

F1 或 F2 辅助功能按键,选择对应的档位。

100.0 VAC

150.0

000.0 FRQ HZ

(F2) (F3)

RANGE 150V

图 4.5 输出档位切换

方法二:

4.2 输出档位切换

PWR1000L 有 2 档输出, 电源输出开启时, 不允许档位切换。

输出量程范围与设定步骤

表 4.1 档位范围 描述了产品的 H 档和 L 档的(有效值)范围。

表 4.1 档位范围

	AC 模式	DC模式/AC+DC模式
H档	0V~300V	-424V~+424V
L 档	0V~150V	-212V ~ +212V

档位设定有2种方法:

方法一:

按下"Range"按键,调节组合旋钮, 选定所需要的档位,再按下"确定"按键。

4.3 输出电压值设置

输出电压值设定,在3种模式下略有不同,电压值应在限定范围内设置。下面以300V 量程进行输出电压值设定。

(F1)

输出电压值设定

● AC 模式

设置交流模式下的所需电压输出值:在 AC模式,按V键一〉数字键,输入设定电压。

图 4.6 AC 模式电压值设定

线性型可编程交流电源

● DC 模式

设置直流模式下所需的电压输出值。在 DC 模式,按 V 键一〉数字键,输入设定电压。

0N [150] 300V	50 0 VAC	
✓ DC ■ 0%		-0.6 v vdc
STOP	50.0 ^{vdc}	0.0 A [Arms]
•Z• IMP	1000.0 ^{FRQ}	0.0 VA S
SAVE	RECALL	NORM

图 4.7 DC 模式电压值设定

● AC+DC 模式

设置交直流叠加模式下所需要的电压输 出值。选定 AC+DC 模式,选定电压设定功 能:按 V 键一〉F1一〉数字键;设置 AC 电 压:输入 AC 电压一〉F2一〉数字键;设定 DC 电压:输入 DC 电压一〉确定键。

图 4.8 AC+DC 模式电压值设定

NOTE1:设置电压值时,确保 AC+DC 电压峰值, H 档为-424 V~+424 V 范围, L 档为-212 V~+212 V 范围内。

NOTE2: 电压和频率设置时有两种模式,第一种是使用旋钮调节某一位,并在输出开启时实时生效;第二种是直接键入数字按确认,按下"V"键时初始化为第一种模式,一旦进入第二种模式,不能切换回第一种。

4.4 输出频率设置

AC 模式、AC+DC 模式可进行频率设定。

输出频率设定方法

频率设定有两种方法:

方法一:

按下"F"按键,数字键直接键入频率,再按"Enter"进行确认;

方法二:

按下"F"按键,通过调节组合旋钮 对频率值进行调节。

线性型可编程交流电源

4.5 输出相位角设置

在 AC、AC+DC 模式下,可设置输出波形的开始、结束相位。相位角设置范围为:0°~359°。

开始(结束)相位设定方法

为更明显显示相位情况,SIMP 界面可切 换至 NORM 界面(按"F5")。示例采用 AC+DC 模式进行演示。

2. 按下 "SPHASE" 所对应的 "F1" 按键,

3. 选择 "ON" 对应下的 "F2" 键,设置开

始(结束)相位值。

选择开始(结束)相位设定。

开始(结束)相位可按照下述步骤操作。

	VAC	50.0V	Vrms	V000.0	
2007 2007 2007	VDC	50.0V	Arms	0.000A	
	FRQ	100.0Hz	Р	0.0VV	
	ON PHS	OFF	VHz	0.0HZ	
	OFF PHS	OFF	∨pk+	0.076V	
	WAVE	1-SINE	Apk+	0.009A	
SAV	E RECALI			SIMPLE	
F1) (F2)	F3	F 4	(F5)	

图 4.10 NORM 界面

	"Shift"	>	"Phase".
	SIIII	/	rnase .

	VAC	50.0V	Vrms	V000.0	
200V	VDC	50.0V	Arms	0.000A	
• • • • • • • • • • • • • • • • • • • •	FRQ	100.0Hz	Р	0.0VV	
effe STOP	ON PHS	OFF	VHz	0.0HZ	
E IMP	OFF PHS	OFF	∨pk+	0.092V	
SPHASE EPHASE					
F1) (F2)	F3	F 4	F 5	

图 4.11 开始/结束相位选择界面

	VAC	50.0V	Vrms	V000.0		
*** 300V *** AC/DC	VDC	50.0V	Arms	0.000A		
	FRQ	100.0Hz	Р	0.0VV		
	ON PHS	OFF	VHz	0.0HZ		
	OFF PHS	OFF	∨pk+	0.061V		
SPHASE OFF						
OFF	ON					
F1) F2	F3	F 4	F 5		

图 4.12 开始相位选择

	VAC	50.0V	Vrms	V000.0		
CSSS 300V 200V 200V 200V	VDC	50.0∨	Arms	A000.0		
0%	FRQ	100.0Hz	Р	0.0W		
	ON PHS	1Deg	VHz	0.0HZ		
·⊠· IMP	OFF PHS	OFF	∨pk+	0.076V		
SPHASE 50						
OFF	ON	Range : 0 ~ 35	59			

图 4.13 设置开始相位

产品用户手册

PWR1000L

线性型可编程交流电源

4.数字键键入开始(结束)相位值一)按 "Enter"键,完成设定。或者通组合旋 钮,进行调节后,按"Enter"按键完成 设置。

	VAC	50.0V	Vrms	V000.0
¹ 300∨ ¹ AC/DC	VDC	50.0∨	Arms	0.000A
0%	FRQ	100.0Hz	Р	0.0W
	ON PHS	50Deg	VHz	0.0HZ
E IMP	OFF PHS	OFF	∨pk+	0.076V
	WAVE	1-SINE	Apk+	0.012A
SAVE RECALL SIMPLE				

图 4.14 完成开始相位设置界面

4.6 输出打开/关闭操作

- 本产品的输出电压超过了人体的安全电压,确定安全后,才能打开输出,防止触电危险。
- 请勿用手触摸 OUTPUT 接线端子,以及接线盒。
- 在 DC 模式下,输出端连接有容性元件或者是电池器件时,即使在输出为"OFF"状态, 该负载元件能量释放完之前,OUTPUT 接线端子连接处依然残余部分电压。不接负载时 内部电解电容的放电时间>2s。请勿用手触摸 OUTPUT 接线端子,以及接线盒。

打开/关闭输出方法

通过按下前面板的"ON/OFF" 按键来控制输出开关。

"ON/OFF"键灯亮,表示输出 打开,"ON/OFF"灯灭,表示输出 关闭。显示面板如 2.6.3。

图 4.15 输出打开

4.7 显示模式设置

显示模式有两种:简单模式(SIMP)和标准模式(NORM)。按 F5 键,两种模式可相互切换。

		+		VAC	100.0V	Vrms	V000.0
Case 300V Case 300V Case 300V Case 300V	100.0 ^{vac}	~~	▲ AC	VDC	150.0∨	Arms	0.000A
0%			0%	FRQ	1000.0Hz	Р	0.0VV
	100.0	0.0 A [Arms]		ON PHS	OFF	VHz	0.0HZ
E IMP			E IMP	OFF PHS	OFF	∨pk+	0.076V
문는 LOCAL		0.0	Ra LOCAL	WAVE	1-SINE	Apk+	0.012A
SAV	E RECALL	NORM	SAV	e recali			SIMPLE
F1) F2 F3 (F4 F5	F1) (F2)	F3	F4	F 5
图 4.16 简单模式(SIMP)				图 4	1.17 标准模	気(NORI	(M

4.8 键盘锁

为防止在输出时,误操作操作面板,可以设定锁定按键面板。

ON [150 300V			ON [150 300V		
✓ AC 1%		99.8 v Vrms	☆ AC 1%		99.8 v vrms
STOP		0.1 A Arms	STOP	150.0	0.1 A Arms
HERMIMP 사사 EXT 문급 LOCAL	1000.0 HZ	11.1 VA S	HZH IMP ->> EXT Railocal	1000.0 [FRO]	11.2 VA 🖾
SAV	e recall	NORM	SAVE	RECALL	NORM

图 4.18 界面锁未启用

图 4.19 界面锁启用

按 "Shift" —> "Lock (数字键 0)", 进行锁定 (解锁) 操作。锁定时, 除 "ON/OFF"、 "Shift"、 "Lock 可用外, 其他按键均被锁定。

操作面板非锁定状态,界面锁 Logo 灰暗,锁定面板时,界面锁 Logo 红色高亮。

5. 高级操作(按菜单索引)

本章节主要介绍 PWR1000L 可编程交流电源的高级操作,主要包含以下几个方面内容:

- ▶ 参数设定
- ▶ 高级设定
- ▶ 波形库输出
- ▶ 步阶 (STEP) 输出
- ▶ 线路仿真输出
- ▶ 模拟序列输出
- ▶ 使用测量功能
- ▶ 系统设置
- ▶ 三相输出与多机并联

5.1 参数设定

参数设定功能,可以配置 PWR1000L 限定参数、报警参数和高级设定功能。

5.1.1 限定参数

限定参数,可防止因误操作损坏负载。参数限定功能,主要对输出电压、频率和电流等 进行限制。在工作期间,输出参数超过限定值,会触发系统报警并且产生保护动作。

参数限定主要内容如表 5.1 参数限定内容所示。

限定参数	参数描述	可设范围	默认值
	设置输出 AC 由王超阻	0.1~300.0(300V挡)	300.0
	以且抽出 AC 电压板限	0.1~150.0(150V挡)	150.0
	设置输出 DC 电压上极	0.0~(+424.0)(300V挡)	424.0
ODC LPK	限	0.0~(+212.0)(150V挡)	212.0
UDC 下限	设置输出 DC 电压下极	0.0~ (-424.0) (300V 挡)	-424.0
ODC TPK	限	0.0~ (-212.0) (150V 挡)	-212.0
F上限	设置输出频率(F)上限	0.1~10000.0	10000.0
T 上阳	·	0.100~5.000(300V挡)	5.000
	以且抽山 I (电视) 上限	0.100~10.000(150V挡)	10.000
	设置输出 I (电流) 峰值	0.100~20.000(300V挡)	20.000
	上限	0.100~40.000(150V 挡)	40.000
	设置输出I(电流)峰值	0.100~20.000(300V挡)	20.000
	上限	0.100~40.000(150V挡)	40.000
常规输出斜坡	每毫秒电压上升幅度	0.0~300.0	0.0V/ms

表 5.1 参数限定内容

限定常规参数设置

参数限定功能,可以对输出整机的输出电压、电流、频率等进行限定,若输出超过设置 限定值时,将会触发系统保护,系统将会发生保护动作。

ON []		参数设定	ON [] [19] 300V	NO.	NAME 限定参数	VALUE
~/ AC		波形库编辑	~/ AC	1001	UAC上限	300.0V
		0. 步阶输出	0%		UAC下限	0.0V
STOP		线路仿真	I STOP		UDC上限	430.0V
	0.0	0. 序列输出			UDC下限	-430.0V
E IMP			E IMP		F上限	1000.0Hz
→~ EXT			-≫ EXT		止限	
Sa LOCAL			E LOCAL		IPEAKN	20.000A
SAV	E RECALL	系统与存储	ALL	-	LIMIT ALARM	ADVANCE TEST

Menu->Enter->LIMIT (F2),进入限定参数设置界面

图 5.1 参数设定功能选择

图 5.2 限定参数列表

NOTE1: 在输出开启时可设置限定值。设置的限定值小于当前输出值时,在下一次输出开启时生效。

NOTE2:系统保护动作包括有:切断输出、报警提示等。

设置软启动(电压上升时间)

为了防止输出 OFF(引起报警动作),以及由于负载设备的冲击电流超过本产品的额定 容量时,引起电压降低,可以在输出 ON 时,使输出电压慢慢上升,以抑制冲击电流。

图 5.3 软启动示意图

按 Menu->Enter->LIMIT (F2),进入限定参数设置界面,旋转旋钮选择常规输出限 定,可设置每毫秒上升电压大小。

线性型可编程交流电源

ON	NO.		NAME		- Vi	ALUE	
[¹⁵⁰ 300V	1003	UDC上限			430.0V		
∼∕ AC	1004	UDC下限			-430.0V		
0 %	1005	F上限			1000.0H	Z	
জি STOP	1006	止限			5.000A		
	1007	IPEAKN			20.000A		
DE IMP	1008	IPEAKP			20.000A		
EXT	1009	常规输出额	斜坡		0.00V/m	S	
Ea LOCAL							-
ALL	- 1	LIMIT	ALARM	ADVA	NCE	TEST	

图 5.4 软启动设置

NOTE1:当常规输出斜坡设定值为 0.0V/ms 时,则关闭软启动功能。

产品用户手册

5.1.2 报警参数

为了对限定参数可控,可对响应动作和响应动作时间进行配置,并且还可以进行报警设置。

报警参数	参数描述	可设范围	默认值
I超出限定值动作	I 过流响应动作	关闭输出	关闭输出
I超出限定检测时间	I 过流响应动作时间	0.0-1.0	0.2s
功率超出限定值动作	留出限定值动作 过功率响应动作		关闭输出
SOA 动作时间	输出模块保护时间	1.0-3.0	1.0s
功率超出限定检测时间	过功率响应动作时间	0.1~1.0	0.1s
UAC 过压报警	UAC 报警电压	0.0-300.0	300.0V
UAC 低压报警	UAC 报警电压	0.0-300.0	0.0V
UDC 过压报警	UDC 报警电压	-430.0-430.0	430.0V
UDC 低压报警	UDC 报警电压	-430.0-430.0	-430.0V
过功率报警	报警功率	0.0-1000.0	1000.0

表 5.2 报警参数内容

报警参数设置如下图 5.5 所示。

	NO.	NAME	VALUE 🔶	ON	NO.	NAME	VALUE 🔤
r ₩ 300V		报警参数		150 300V		超出限定检测时间	0.2S
∼∠ AC	2001	SOA动作时间	1.0S	AC		功率超出限定检测时间	0.2S
	2002	超出限定值动作	关闭输出			UAC过压报警	300.0V
	2003	1超出限定检测时间	0.2S	& STOP		UAC低压报警	0.0V
	2004	功率超出限定检测时间	0.25	El ^e .		UDC过压报警	430.0V
	2005	UAC过压报警	300.0V	<z∘ imp<="" th=""><th></th><th>UDC低压报警</th><th>-430.0V</th></z∘>		UDC低压报警	-430.0V
	2006	UAC低压报警		-J~ EXT	2009	过功率报警	1000.0VA
	2007	UDC过压报警	430.0V	E LOCAL			T
ALL	_	LIMIT ALARM ADVA	NCE TEST	ALL	-	LIMIT ALARM ADVA	NCE TEST

图 5.5 报警参数设置(1)

图 5.6 报警参数设置(2)

NOTE1: 超过限定值,发生响应动作与报警都属于保护动作,可以分别设置与发生。 NOTE2: 过压报警、低压报警、过功率报警设置为0.0时,则关闭此功能。

5.1.3 高级设定

高级配置丰富用户功能使用,若用户为发烧级用户,可自行对 PWR1000L 进行设置, 一般用户,直接使用默认设置。您也可以联系我司人员协助设置。其主要设定内容如表 5.3 高级配置内容所示。

表 5.3	高级配置内容
-------	--------

参数名称	功能	可设定范围	默认状态
频率特性补偿	补偿输出频率	低频、中频、高频	中频
反馈补偿	补偿输出电压	近端、远端	近端
DDS 输入选择	输出基准输入端	内部 DDS/外部 DDS/ 内外 DDS	内部 DDS
外部 DC 比例增益输出	输出有效值控制	开/关	关

频率特性补偿功能

机器内部使用的是高速放大器。由于负载(特别是容性负载)和配电线状态,有发生动 作不稳的情况。用户可根据负载的条件和用途改变内部运放的响应速度,以适应对不同特性 输出进行补偿。电源输出开启时,不允许频率特性补偿功能切换。

● 高频特性

可以用于对电源的上升/下降速度有特殊要求的研发或开发实验等。由于负载的条件不同,输出有动作不稳(产生震动等)的情况。输出前请确认波形。

● 中频特性(标准)

可以用于包括低频干扰试验等,从商业用电源频率到船用以及航天设备用电等各种电源 频率条件下的电源环境测试。

● 高稳定性(低频特性)

可以提供稳定的功率,适用于 EMC 试验场供电电源等各种各样的负载。特别是,本产品的输出连接有大容量的电容(大型噪声滤波器)时,也可以保证动作稳定。作为商业用电的频率输出时,因为具有足够的响应速度,可以用于一般的评价试验。

按 Menu->Enter->ADVANCE (F4),可以配置频率特性补偿功能。

	ON	NO.		NAME		V	ALUE
Γ 150	300V		高级设定				
~/_	AC	3002	频率特性	补偿		中频	
	0%		反馈补偿			近端	
-			DDS输入j	选择		内部DD	
			外部DC比	例增益输出			
•Z•			同步源输。				
~			同步源相角	角延迟		ODeg	
모급							
	ALL		LIMIT	ALARM	ADVA	NCE	TEST

线性型可编程交流电源

图 5.7 频率补偿设置

电压补偿功能 (反馈补偿功能)

电源连接远程负载时,负载线可能会造成电压下降。电压补偿功能是指,本产品连接有远程负载时,补偿由于负载线造成的电压衰减的功能。交流电源通过硬传感(Harh sensing)方式实现输出电压补偿。

直接将负载连接到本产品内部的输出电压补偿点。由于进行实时补偿,因此,可以实现 高速稳定输出电压。

图 5.8 电压补偿接线示意图

电压补偿能力不能超过产品最大输出电压值。

电压补偿功能使用设置步骤

- 有触电危险。在连接远程反馈线时,检查确认 POWER 在 OFF 状态,并 且拔下 AC 电源供电插头以切断电源供电。
- **1.** 确认电气安全

确认 POWER 在 OFF 状态, AC 供电电源插头已经把拔下。

连接反馈线

连接好负载线,再连接好反馈线。

线性型可编程交流电源

图 5.9 反馈线接线图

3. 打开 POWER 开关

检查确认负载线和反馈线已经接好,插上 AC 供电电源,打开 POWER 开关,掷于 ON 状态。

 4.
 设置远端反馈补偿

 Menu - >Enter - >ADVANCE

 (F4),滚动组合旋钮,选择反馈补偿,

 将反馈补偿改为远端。

ON			VALUE
r159 300V		高级设定	
~/ AC	3002	频率特性补偿	中频
	3001	反馈补偿	近端
STOP	3003	DDS输入选择	内部DDS
	3004	外部DC比例增益输出	关
E IMP	3005	同步源输入	关
J~ EXT	3006	同步源相角延迟	ODeg
		反馈补偿 近端	
䜣端	ì	元立端	

图 5.10 远端反馈补偿

5. 输出

NOTE: 请使用双绞线作为负载反馈线,以尽可能减少引线带来的影响。

5.2 波形库输出

波形库的数据,既可提供步阶输出、线路仿真输出和模拟序列输出使用,也可以直接输 出。波形库中,预设有基础波形,基础波形包含一些常用波形,如正弦波、方波、三角波、 梯型波等。此外,波形库可以输出任意波形。

5.2.1 波形库编辑

波形库提供30组波形存储空间用来存储波形,每个波形分配一个ID用来识别波形类型, 波形存储在的存储空间,用存储编号来表示,1~10号存储空间是系统预设波形,为只读波 形数据。如表 5.4 波形库所示。

存储编号	波形 ID	波形名称	默认参数
1	0	正弦波	
2	1	方波	占空比: 50%
3	2	三角波	占空比: 50%
4	3	梯形波	上升时间比例: 33.3%, 稳定时间比例: 33.3
5	4	阶梯波	上升段步阶数:5步
6	5	钳位波	钳位值与峰值比例: 80%
7	6	波峰因数波	峰值因数: 2
8	7	谐波	总谐波失真 1%:3、5、7 次含量 0.5%;11、13、15 次含量 0.15%
9	7	谐波	总谐波失真 5%; 3、7次含量 2.5%; 11、13、15次 含量 1.25%
10	7	谐波	总谐波失真 10%; 3、5、7 次含量 5%; 11、13、15 次含量 2.5%

表 5.4 波形库参数设置表

NOTE: 面板可以从 ID 为 1~10 的基础波形中选择一个波形进行编辑,然后将波形保持到 11~30 号存储单元中,以 供调用。

产品用户手册

5.2.2 面板编辑波形库示例

例:在11号存储单元中存储一个占空比为80%的方波。

.选择波形库编辑

Menu—>波形库编辑(旋转旋钮) —>Enter。

图 5.12 波形存储 ID

3. 选择基本波形

EDIT->Enter->选择方波(旋转旋 钮)->Enter

图 5.13 选择基本波形

ON WAVE ID 11-SINE 300V SHAPE SQUA OK DUTY 50.0 STOP C T DUTY 80

4. 对基本波形进行编辑

选择占空比(旋转旋钮)—> Enter—> 输入 80—> Enter—>选择 SAVE。

产品用户手册

线性型可编程交流电源

图 5.14 修改波形特性

5. 确认波形信息,完成波形编辑。

直接选择输出 11-SINE 波形,在示波器 上看到占空比为 80%的方波

5.2.3 任意波形编辑输出

任意波形是提供给用户自定义的波形,这种波形可能无法用公式统一描述。所以,波形数据直接用 4096 个点描述。波形不能由仪器面板编辑产生,需要通过 PC 机产生,由外部 通信接口导入。

5.2.4 波形库波形选择输出

PWR1000L,可以选择波形库中任意的波形输出。选择 shift—>wave.

ON	VAC	100.0V	Vrms	V000.0		VAC	100.0V	Vrms	V000.0
∼ AC	VDC	50.0V	Arms	0.000A	1500 300 V 200 V 200 V 200 V	VDC	50.0V	Arms	0.000A
0%	FRQ	100.0Hz	Р	0.0W	0%	FRQ	100.0Hz	Р	0.0W
	ON PHS	OFF	VHz	0.0HZ		ON PHS	OFF	VHz	0.0HZ
E IMP	OFF PHS	OFF	∨pk+	0.061V	E IMP	OFF PHS	OFF	∨pk+	0.061V
		WAVE ID 2-S	QUA			WAVE	2-SQUA	Apk+	0.012A
					SAV	E RECAL	L	•	SIMPLE

5.16 任意波形输出设置界面

5.2.5 常规输出参数与控制定义

常规输出时需要设置的条件

- 选择波形
- 选择输出模式 AC/DC/ACDC
- 设定电压、频率、起始相位、结束相位
 辅助 IO 控制
- AUX_OUT_4 (RANGE_STATUS): 输出当前量程状态
- AUX_OUT_7 (ALARM_STATUS): 输出当前是否发生限位或者报警
- AUX_OUT_8 (OUTPUT_STATUS): 输出当前状态是 ON 还是 OFF AUX_IN_8 (OUTPUT_ON/OFF): 控制常规输出 ON/OFF

```
产品用户手册
```

5.3 步阶 (STEP) 输出

可输出任意波形,提供丰富的波形,模拟任意的电源异常环境。可模拟电网、供电设备等停电、电压下降(dip)、电压上升(pop)等异常。可以使用此功能对开关电源、电子设备等进行测试。

步阶(STEP)输出特点是:设定简单,可输出电压、频率规律变化的波形。

5.3.1 步阶参数设定

步阶参数设定可以在面板设置,也可通过远程编程设置。具体设置的参数如表 5.5 所示。

参数名称	取值范围	描述
输出波形(WAVE)	1-30	设定输出波形对应的波形库
步数 (STEPS)	0-10000	执行的步数
触发次数(LOOPS)	1-10000	表示输出变化的次数
执行时间(TIME)	0.001-3600s	每步执行的时间
触发方式(TRIG MODE)	自动/手动	自动模式输出时间完毕后自动进入下一步输出;手动触发方式需要外部 IO 或者手动按下 OUTPUT 键
触发输出(TRIG OUT)	ON/OFF	输出的触发方式为 ON 或 OFF
开始 VAC(VAC)	0-限定值	初始步输出的 AC 电压
步长 VAC(STEP VAC)	0-限定值	每步变化输出的 AC 电压
开始 F (F)	1-1000	初始步输出的 AC 电压频率
步长 F (STEPF)	1-1000	每步变化输出的 AC 电压频率
开始 VDC(VDC)	0-限定值	初始步输出的 DC 电压
步长 VDC (STEP VDC)	0-限定值	每步变化输出的 DC 电压
开始相位(ON PHS)	0-359	每步输出时的起始相位,分辨率为1°
结束相位(OFF PHS)	0-359	每步输出结束时的相位,分辨率为1°

表 5.5 步阶(STEP)参数设置表

设置触发方式为"自动",执行完当前步骤后,会自动进入下一个输出步骤;否则,当 前步骤输出完毕后,会保持输出,直到外部输入触发 IO 有信号或者再次按下 Continue 按键。

输出起始相位,每步输出都从起始相位开始输出,执行满足输出时间后,需要等待到结 束相位才转跳到下一步。输出相位也可以设定为随机,这样每步执行时间就严格等于设定时 间。否则由于结束相位的输出,输出时间理论上可能大于设定时间。

设定输出次数,输出次数直接决定了最大每步变化步长。所以设定的时候,如果修改了 输出次数,最后的输出值经计算超出量程限定,会自动调整步长设定值。同理,编辑步长设 置值时会受到量程、设置限定值等综合限制,而不能随意设定。

产	品	用	户	手	册
	нн	/ 1			1413

触发输入输出

端口名称	属性	描述
输出控制	输入	用控制输出 ON
输出控制	输入	用控制输出 OFF
输出控制	输入	控制输出状态为 Hold
输出控制	输入	控制输出为 Continue
触发输出	输出	每步骤开始时输出触发信号
触发输出	输出	每步骤结束时输出触发信号
触发输出	输出	输出当前状态时 ON/OFF
触发输出	输出	输出当前状态时 Busy/Hold

表 5.6 触发输入输出表

5.3.2 步阶(STEP)功能模拟渐变电压演示示例

用步阶功能,模拟渐变电压。输出一个开始 VDC=0、开始 VAC=40、开始 F=50Hz, STEP AC=10、STEP DC=20、STEP F=50Hz,执行了 4 步的正弦波。

Menu —>步阶输出(旋转旋钮)
 →Enter。

图 5.17 步阶功能选择菜单

	Vrms	0.000V	Apk-	-0.027A
	Arms	0.000A	PF	0.00
[≁] ∠ AC/DC		0.0VV	Vpk+	0.168V
	STATE	STEP STOP	LOOP	
	TRIG	AUTO	STEP	
	VAC	40.0V	TIME	
	VDC	0.0V	FV	50.0HZ
EDI	r RUN			RECALL

图 5.18 步阶参数界面

2. 观察步阶参数界面。

ZLG 致远电子

PWR1000L

线性型可编程交流电源

3.步阶全局变量设置(按 F1)。

设置步阶波形(1-SINE)—>设置步数 (4)—>循环次数(LOOP 为 1)—>每一 步执行时间(TIME 为 0.060S)—>设置触 发方式(TRIG MODE 为 AUTO)—>触发 输出(TRIG OUT 为 OFF)

ON 1 50 300V 2 AC/DC				
0%	WAVE	1-SINE	TRIG OUT	OFF
I STOP	STEPS			
E IMP	LOOPS			
EXT	TIME	0.060 S		
E LOCAL	TRIG MODE	AUTO		
OK	SAVE			PAGE1

4.步阶步长设置

按 F5 继续设置:设置初始电压 (VAC=40.0V) —>步长 AC 电压(STEP VAV=10.0V) —>初始频率(F=50Hz) —> 步长频率频率(STEP F=50Hz) —>初始电 压(VDC=0V) —>步长 DC(VDC=20.0V) —>开始相位(ON PHS=OFF) —>结束相位 (OFF PHS=90)

				/
\chi AC/DC				
	VAC	40.0 V	STEP VDC	20.0 V
	STEP VAC	10.0 V	ON PHS	OFF
		50.0 HZ	OFF PHS	90
	STEP F	50.0 HZ		
	VDC	0.0 V		
OK	. SAVE			PAGE2

图 5.20 每步变化参数设置界面

图 5.21 STEP 输出信息

5. 运行输出。

设置完毕,按Fl完成设置。按F2,运行输出。屏幕上ON、STEP两个图标高亮显示,如图 5.21。

输出波形,可以在示波器上看到如图 5.22 所示。

	产	品	用	<u>户</u>	手	册	
--	---	---	---	----------	---	---	--

											. v.
, ®	<mark>1</mark>	50.0V/div	2	Closed				Stop	Normal	20.0 di	7 T 729i
5		0.001/							21.07	700ms	1.4Mp
	500:1	0.001						Edge	• _^	Norm 2	2.00MSa

图 5.22 STEP 输出波形图

NOTE1:使用 STEP 功能时,注意步数与结束电参值关系,否则输出一直按设定的条件增长,直至产品输出极限。 NOTE2:使用 STEP 功能时,注意模式设置,如有直流偏置电压,请选择 AC+DC 模式。 NOTE3:注意输出档位设置,设定输出的 AC 或 DC 电压均为有效值。

5.4 线路仿真输出

线路仿真模式应用在模拟供电电压的停电、上升等。其特点是输出的波形只有一个,模拟电压突变情况。图 5.23 为线路仿真输出图。

图 5.23 线路异常示意图

5.4.1 仿真功能参数设定

仿真功能设定的所有参数如表 5.7 仿真功能设置参数表所示。

参数名称	取值范围	描述				
输出波形(WAVE ID)	1-30	设定输出波形对应的波形库				
输出次数(LOOP)	1-10000	表示输出变化次数				
触发方式(TRIG MODE)	自动/手动	每个仿真周期结束后 Auto 会自动进入下一个仿真周期; Manul 则需要手动或者外部触发信号触发进入。				
当前步状态(STEP)	3 类	INT/NORMALx/TRANSx/ABNORMAL,表示:初始 状态/正常状态 x/过度状态 x/异常状态				
执行时间(TIME)	0.001-3600s	当前步执行的时间				
VAC	0-限定值	当前步输出的 AC 电压				
FRQ	1-1000	当前步输出的 AC 电压频率				
VDC	0-限定值	当前步输出的 DC 电压				
开始相位(SPHASE)	0-359	当前步输出时的起始相位,分辨率为1°				
结束相位(EPHASE)	0-359	当前步输出结束时的相位,分辨率为1°				
触发输出(TRIG IN)	ON/OFF	每阶段是否输入触发信号				
触发输入(TRIG OUT)	ON/OFF	每阶段是否输出触发信号				

表 5.7 仿真功能设置参数表

表 5.8 不同步骤可设定参数表

参数	初始	正常 1	过渡 1	异常	过渡 2	正常 2
触发输出	YES	YES	YES	YES	YES	YES

<u>产品用户手册</u>

线性型可编程交流电源

开始相位	YES	YES	NO	YES	NO	YES
结束相位	YES	YES	NO	YES	NO	YES
执行时间	YES	YES	YES	YES	YES	YES
Vac	YES	YES	NO	YES	NO	YES
F	YES	YES	NO	YES	NO	YES
Vdc	YES	YES	NO	YES	NO	YES

示例图形如下:

图 5.24 模拟线路异常示意图

仿真分为初始阶段、常规1、过渡1、异常、过渡2、常规2几个设置步骤。其中执行 从初始阶段开始,一次从常规1到常规2循环执行;只有循环次数完毕后又进入初始阶段进 行输出。

设置触发方式为"自动",当前步骤输出时间完毕后,会自动进入下一个输出步骤。否则,当前步骤输出完毕后,会保持输出,直到外部输入触发 IO 有信号或者再次按下 Continue 按键。

每一步骤都存在是否输出触发信号的设置,如果为 On,则在对应的输出 IO 上会出现特定的信号。

触发输入输出

端口名称	属性	描述
输出控制	输入	用控制输出 ON
输出控制	输入	用控制输出 OFF
输出控制	输入	控制输出状态为 Hold
输出控制	输入	控制输出状态为 Stop
输出控制	输入	控制输出为 Continue、Run
触发输出	输出	每步骤开始时输出触发信号
触发输出	输出	每步骤结束时输出触发信号
产品用户手册	•	©2020 Guangzhou ZHIYUAN Electronics Co., Ltd.

表 5.9 触发输入输出表

49

线性型可编程交流电源

触发输出	输出	输出当前状态是否存在限位或者 ALARM 报警
触发输出	输出	输出当前状态是 ON/OFF
触发输出	输出	输出当前状态是 Run/Pause/Stop

5.4.2 仿真功能模拟电压骤升示例

使用线路仿真功能,仿真输出 10VAC,50Hz 的正弦波,骤升为 36VAC,200Hz 的正弦 波。

1.选择仿真功能

Menu一>线路仿真(旋转旋钮)一>确 定

图 5.25 选定线路仿真功能

2. 仿真功能参数界面

	∨rms	V000.0	Apk-	-0.027A
	Arms	0.000A	PF	0.00
Y AC/DC		0.0VV	Vpk+	0.153V
	STATE	SIMU STOP	LOOP	1/0
	TRIG	AUTO	TIME	0: 0: 0
	VAC		FV	50.0HZ
	VDC		STEP	INIT
EDI	r RUN	1		RECALL

图 5.26 仿真功能参数界面

3. 设置仿真波形

按 F1。WAVE ID:选择的波形;LOOP: 整体循环次数(0表示无限循环);TRIG MODE:触发模式,选择为自动。

ON [150] C150 C150V C150V C150V C150V	\sim	$\bigvee \bigvee$	\bigwedge	\sim
0%	WAVE ID	1-SINE		
	LOOP			
LE INT →~ EXT	TRIG MODE	AUTO		
+ USB				
🕀 LOCK				
OK	(SAVE			NEXT

图 5.27 选择仿真波形设置界面

线性型可编程交流电源

4. 设置初始状态(INT)

初始状态参数可以设置成正常状态相 同,此状态可以模拟电源线开机状态转正 常状态的过渡状态。

ON [553 300V [∞] AC/DC	All	\bigvee	$\bigwedge \bigwedge \bigwedge$	\mathbb{N}
0%	STEP	INIT	SPHASE	OFF
I STOP	TIME	0.001	EPHASE	OFF
E IMP	VAC	10.0	TRIG IN	OFF
⊷ EXT	FRQ	50.0	TRIG OUT	OFF
문는 LOCAL	VDC	0.0		
OK	SAVE		PREV	NEXT

图 5.28 波形起始状态设置界面

ON [150 300V ² AC/DC	All	\bigvee	~~~~	\sim
0%	STEP	NORMALO	SPHASE	OFF
I STOP	TIME	0.200	EPHASE	OFF
E IMP	VAC	10.0	TRIG IN	OFF
	FRQ	50.0	TRIG OUT	OFF
E LOCAL	VDC	0.0		
OK	SAVE		PREV	NEXT

图 5.29 正常供电状态设置界面

图 5.30 过渡状态 0 设置界面

 300V
 AC/DC

 0%
 STEP

 ABNORMAL
 SPHASE

 OFF

 TIME
 0.050

 EPHASE
 OFF

 RG
 VAC

 38.0
 TRIG IN

 P
 FRQ

 200.0
 TRIG OUT

 OFF
 OFF

图 5.31 骤升异常状态设置界面

5. 设置正常状态 0(NORMAL0) 正常供电电压的状态 0。

6. 设置过渡状态 0 (TRANS0)

由正常状态转到异常的过渡状态。过 渡状态持续 0.03s。

7. 设置骤升异常状态(ABNORMAL)

异常状态持续 0.05s, 电压有正常态的 10v 骤升为 36v, 频率由正常态的 50Hz 骤 变为 200Hz。

PWR1000L

线性型可编程交流电源

8. 设置过渡状态 1 (TRANS1):

由异常状态转到正常的过渡状态。过 渡状态1持续时间为0.03s。

ON E555 300V ~_ AC/DC	\sim	$\bigvee \bigvee$	\bigwedge	·
0 %	STEP	TRANS1		
International In	TIME	0.030		
E IMP	TRIG IN	OFF		
-»~ EXT	TRIG OUT	OFF		
The LOCAL				
OK	SAVE		PREV	NEXT

图 5.32 过渡状态 1 设置界面

9. 设置正常状态 1(NORMAL1) 正常供电电压的状态。恢复到正常状

态。(此状态可以设置与正常状态0不同)。

ON [300 300V ☆ AC/DC	\sim	\sim	\bigwedge	\sim
	STEP	NORMAL1	SPHASE	OFF
	TIME	0.200	EPHASE	OFF
	VAC	10.0	TRIG IN	OFF
	FRQ	50.0	TRIG OUT	OFF
	VDC	0.0		
OK	SAVE		PREV	

图 5.33 正常供电状态 1 设置界面

10. 确认输出

按 F1 完成设置,按 F2 运行仿真功能。 状态栏 SIMU 图标亮起。

示波器可看到输出波形如图 5.36 所示。

ON	∨rms	V000.0	Apk-	-0.027A
	Arms	0.000A	PF	0.00
🗡 AC/DC		0.0VV	Vpk+	0.183V
	STATE	SIMU RUN	LOOP	
	TRIG	AUTO	TIME	
×⊠• IMP	VAC	10.0V	FV	50.0HZ
	VDC	0.0V	STEP	NORMALO
PAUSE STOP				

图 5.34 输出仿真波形参数界面

图 5.35 仿真功能输出波形

NOTE1:使用仿真功能时,注意模式设置,如有直流偏置电压,请选择 AC+DC 模式。

NOTE2: 注意输出量程设置,其输出的 AC 或 DC 电压值均为有效值。

NOTE3: 仿真功能提供存储 10 组仿真波形的空间,供用户保存常用的仿真波形信息。

<u>产品用户手册</u>

5.5 模拟序列输出

模拟序列输出,是对预先保存的输出电压、频率、时间等设定的组合,按顺序调用实现 自动运转的输出功能。

图 5.36 模拟序列输出波形图

图 5.36 模拟序列输出波形图 波形组,每个波形输出时间为 30ms,从左往右,依次是 正弦波、三角波、阶梯波、频率和幅度都变化的正弦波、功率因数波。

5.5.1 模拟序列参数设定

模拟序列输出功能具体参数如下图所示。

表 5.10 模拟序列设置参数表

参数名称	取值范围	描述
		全局设置
输出次数(LOOP)	1~10000	序列循环执行的次数
触发方式(TRIG MODE)	自动/手动	自动模式输出时间完毕后自动进入下一步输出;手动触发方式需要外部 IO 或者手动按下 OUTPUT 键
跳转功能(ALL JMP)	ON/OFF	序列中跳转功能是否开启,总的开关
波形固定(FIX WAVE)	ON/OFF	ON 时,每个步骤输出波形相同,都是第一步设定的波形; OFF 输出每一步自己设定的波形
步数(COUNT)	1-10000	序列中包含的步数
单步设置		
当前步序号	0-10000	当前步的序号

产品用户手册

线性型可编程交流电源

(SEQUE)		
输出波形(WAVE)	1~30	设定输出波形对应的波形库
执行时间(TIME)	0.001~360 0s	每步执行的时间,若设置为0,表示当前(主/子)序列结束。
开始 Vac(SVAC)	0~限定值	步骤开始输出的 AC 电压
结束 Vac(EVAC)	0~限定值	步骤结束输出的 AC 电压
开始 F(SFU)	1~1000	步骤开始输出的 AC 电压频率
结束 F (EFU)	1~1000	步骤结束输出的 AC 电压频率
开始 Vdc(SVDC)	0~限定值	步骤开始输出的 DC 电压
结束 Vdc(EVDC)	0~限定值	步骤结束输出的 DC 电压
开始相位(ON PHS)	0~359	步骤开始的起始相位,分辨率为1度
结束相位(OFF PHS)	0~359	步骤结束时的相位,分辨率为1度
触发输入(TRIG IN)	ON/OFF	步骤是否需要触发才能输出
触发输出(TRIG OFF)	ON/OFF	进入和结束该步骤时是否触发输出
跳转步骤(JMP TO)	0~255	0步骤表示不跳转, 1~255 表跳转到相应的步骤
跳转次数(JMP LOOP)	1~10000	设定跳转的循环次数

输出控制 IO

表 5.11 输出控制 IO

端口名称	属性	描述
输出控制	输入	用控制输出 ON
输出控制	输入	用控制输出 OFF
输出控制	输入	控制输出状态为 Hold
输出控制	输入	控制输出状态为 Stop
输出控制	输入	控制输出为 Continue、Run
触发输出	输出	每步骤开始时输出触发信号

<u>产品用户手册</u>

线性型可编程交流电源

触发输出	输出	每步骤结束时输出触发信号
触发输出	输出	输出当前状态是 ON/OFF
触发输出	输出	输出当前状态是否存在限位或者 ALARM 报警
触发输出	输出	输出当前状态是 Run/Pause/Stop

5.5.2 一种序列输出编辑方式

● 设定 AC 电压、DC 电压、频率的开始和结束值

采用设定 AC 电压、DC 电压、频率的开始值和结束值方式,既可以满足编程的"保持" "常规""变化"功能,也满足输出的"斜坡"等变化设定。

● 结束序列执行标志

PWR1000L 序列输出功能,使用执行时间为0的波形作为结束标志。

● 转跳方式

设置跳转执行,存在一个总的开关。大多数人可以不用设置跳转功能,可以直接关闭这 个危险的动作,但使用跳转功能,可以更加灵活输出波形。

图 5.37 跳转方式设置界面

若执行跳转功能,则序列分为主序列和子序列,只有主序列才有跳转功能,主序列可跳转到主序列,也可跳转到子序列,主序列遇到执行时间(TIME)为0的波形,所有序列输出全部结束。子序列只有遇到执行时间(TIME)为0的波形,才跳转回到主序列。

5.5.3 模拟序列输出示例

使用模拟序列输出功能,使用跳转,模拟输出7种波形,波形数据如下表所示。设置波形组输出顺序为:1->2->6->7->8->3->8->4

SEQUE	WAVE	TIME	SVAC	EVAC	SFU	EFU	SVDC	EVDC	JIMP TO	JIMP LOOP
主序列										
1	1-SINE	0.15	50	50	100	100	50	50	0	1
2	3-TRIA	0.15	50	50	100	100	50	50	6	1
产品用户手册 ©2020 Guangzhou ZHIYUAN Electronics Co., Ltd										

表 5.12 示例波形数据

线性型可编程交流电源

3	2-SQUA	0.15	50	50	100	100	50	50	8	1
4	4-TRAP	0.15	50	50	100	100	50	50	0	1
5	-	0	-	-	-	-	-	-	-	-
6	5-STEP	0.15	50	50	100	100	50	50	0	0
7	1- SINE	0.15	1	100	50	200	-20	50	0	0
8	7-CF	0.15	50	50	100	100	50	50	0	0
9	-	0	-	-	-	-	-	-	-	-

设置步骤

•选择序列输出功能: Menu一〉序列输出(旋转旋钮)一〉Enter。

图 5.38 选择序列功能

2. 全局设置

LOOP:序列输出次数,设置为1次;TRIG MODE: 触发方式,设置为自动;ALLJMP: 跳转功能,设置为开启;FIX WAVE: 波形固 定,设置为关闭。

图 5.39 输出序列参数界面

图 5.40 全局变量设置

3.单步设置

主序列设置。

首先设置、执行主序列,当执行到 TIME 设置为 0 的波形序列时,主序列结束。 第一组:正弦波(如下)

线性型可编程交流电源

C ¹⁵⁰ 300V				
AC/DC				
	SEQUE	1	SFU	100.0 HZ
	WAVE	1-SINE	EFU	100.0 HZ
	TIME		SVDC	50.0 V
EXT	SVAC	50.0 V	EVDC	50.0 V
E LOCAL	EVAC	50.0 V		
OK	. SAVE	PAGE1/2		NEXT

[150 300V				
[∼] ∕∠ AC/DC				
0%	ON PHS	OFF	JMP LOOP	1
CE STOP	OFF PHS	OFF		
IMP	TRIG IN	OFF		
	TRIG OFF	OFF		
E LOCAL	JMP TO			
OK	SAVE	PAGE2/2		NEXT

图 5.42 序列 1 设置界面(2)

图 5.41 序列 1 设置界面(1)

第二组:三角波(如下)

ON [] [150] 300V ~AC/DC				
	SEQUE		SFU	100.0 HZ
	WAVE	3-TRIA	EFU	100.0 HZ
	TIME		SVDC	50.0 V
	SVAC	50.0 V	EVDC	50.0 V
	EVAC	50.0 V		
OK	SAVE	PAGE1/2	PREV	NEXT

图 5.43 序列 2 设置界面(1)

) 图 5.44 序列 2 设置界面(2)

ON SEQUE 3 SFU 100.0 HZ 0% SEQUE 3 SFU 100.0 HZ 0% VWAVE 2-SQUA EFU 100.0 HZ 0% TIME 0.150 S SVDC 50.0 V MCT SVAC 50.0 V EVDC 50.0 V 25 LOCAL EVAC 50.0 V EVDC 50.0 V 0K SAVE PAGE1/2 PREV NEXT

图 5.45 序列 3 设置界面(1)

第四组:梯形波(如下)

第三组: 方波(如下)

				/
MC/DC				
	SEQUE		SFU	100.0 HZ
	WAVE	4-TRAP	EFU	100.0 HZ
	TIME		SVDC	50.0 V
	SVAC	50.0 V	EVDC	50.0 V
	EVAC	50.0 V		
OK	. SAVE	PAGE1/2	PREV	NEXT

ON				
🗡 AC/DC				
	ON PHS	OFF	JMP LOOP	
	OFF PHS	OFF		
	TRIG IN	OFF		
	TRIG OFF	OFF		
	JMP TO			
OK	SAVE	PAGE2/2	PREV	NEXT

图 5.46 序列 3 设置界面(2)

AC/DC	-			
• 0%	ON PHS	OFF	JMP LOOP	1
COP STOP	OFF PHS	OFF		
IMP	TRIG IN	OFF		
	TRIG OFF	OFF		
E LOCAL	JMP TO			
OK	K SAVE	PAGE2/2	PREV	NEXT

产品用户手册

线性型可编程交流电源

图 5.47 序列 4 设置界面(1)

图 5.48 序列 4 设置界面(2)

第五组:TIME 设置为 0, 主序列波形组结束标志(如下)

图 5.49 序列 5 设置界面(1)

子序列组设置

第六组:阶梯波(如下)

[¹⁵⁰ 300V				
\chi AC/DC				
0%	SEQUE		SFU	100.0 HZ
	WAVE	5-STEP	EFU	100.0 HZ
E IMP	TIME		SVDC	50.0 V
-»~ EXT	SVAC	50.0 V	EVDC	50.0 V
E LOCAL	EVAC	50.0 V		
OK	. SAVE	PAGE1/2	PREV	NEXT

图 5.51 序列 6 设置界面(1)

第七组:正弦波(如下)

[150 300V				/
🗡 AC/DC				
0%	SEQUE		SFU	50.0 HZ
STOP	WAVE	1-SINE	EFU	200.0 HZ
E IMP	TIME		SVDC	-20.0 V
-≫ EXT	SVAC		EVDC	50.0 V
EB LOCAL	EVAC	100.0 V		
OK	. SAVE	PAGE1/2	PREV	NEXT

图 5.53 序列 7 设置界面(1)

第八组:功率因数波(如下)

图 5.50 序列 5 设置界面(2)

ON				
C ¹⁵⁰ 300V				
🗡 AC/DC				
	ON PHS	OFF	JMP LOOP	0
	OFF PHS	OFF		
	TRIG IN	OFF		
	TRIG OFF	OFF		
	JMP TO			
OK	. SAVE	PAGE2/2	PREV	NEXT

图 5.52 序列 6 设置界面(2)

ON 1 550 300V 2 AC/DC				
	ON PHS	OFF	JMP LOOP	
	OFF PHS	OFF		
	TRIG IN	OFF		
	TRIG OFF	OFF		
	JMP TO			
OK	. SAVE	PAGE2/2	PREV	NEXT

图 5.54 序列 7 设置界面(2)

图 5.55 序列 8 设置界面(1)

图 5.56 序列 8 设置界面(2)

第九组:TIME 设置为 0,子序列结束标志(如下)

0N €555 300V ∞ AC/DC						300V .				
	SEQUE		SFU	50.0 HZ			ON PHS	OFF	JMP LOOP	
	WAVE	1-SINE	EFU	200.0 HZ	atta a		OFF PHS	OFF		
	TIME	0.000 S	SVDC	-20.0 V	· 2 ·		TRIG IN	OFF		
	SVAC		EVDC	50.0 V	 		TRIG OFF	OFF		
	EVAC	100.0 V					JMP TO			
OK	SAVE	PAGE1/2	PREV	NEXT		ОK	SAVE	PAGE2/2	PREV	NEXT

图 5.57 序列 9 设置界面(1)

图 5.58 序列 9 设置界面(2)

4.按 F1—>F1,运 行序列输出。经过上述设置,序列已经配置完毕。 为了看效果,可在示波器上依次看到下列波形。

图 5.59 正弦波

图 5.60 三角波

<u>产品用户手册</u>

线性型可编程交流电源

图 5.65 功率因数波

将示波器改为100ms/div,可以看到输出的八个波形段。

图 5.67 序列整体波形图

线性型可编程交流电源

NOTE1: 输出模式要选择 AC+DC 模式, 输入电压值均指有效值。

NOTE2:输出的波形组,可以只输出主序列波形组,不设置子序列波形组。子序列无跳转功能,所以子序列的JIMP LOOP、JIMP TO 两项设置为0。

NOTE3:子序列可以设置很多组。

NOTE4:如果序列波形 TIME 设置为 0,则表明主序列或者子序列的波形组输出结束。

NOTE5: 输出相位角,可在每一组波形组中设置。

5.6 使用测量功能

测量功能,主要方便用户对电源的输出参数(电压、电流、频率、视在功率等)进行了 解。此外,还提供谐波分析和 FFT 功能。

5.6.1 测量参数设定

在主页的标准模式(NORM),可直观看到6项测量参数。用户可对这6相参数进行选择。这6相参数可设置的项目如表所示。

项目	描述	项目	描述
Vrms	输出电压有效值	Apk-	输出瞬时电流负峰值
Arms	输出电流有效值	VHz	输出电压频率
Р	输出有功功率	AHz	输出电流频率
S	输出视在功率	SrcV	输入电源电压有效值
Vpk+	输出瞬时电压正峰值	SrcHz	输入电源频率
Apk+	输出瞬时电流正峰值	Vdc	输出直流电流值
Vpk-	输出瞬时电压负峰值	MeanA	DC 模式下平均电流

攵
ļ

例:在最后一项(NOR MSR6),显示的测量数据为 SrcV(输入功率)。

1. 选择设置测量功能

"Menu"─>选择"测量设定"─>按"F1" 选择"SETTING"功能。

ON	Vrms	100.010V	Apk+	0.696A
	Arms	0.492A	∨pk-	-141.222V
	Р	48.9W	Apk-	-0.708A
	s	49.2VA	∨Hz	1000.0HZ
	PF	0.99	AHz	1000.0HZ
	∨pk+	141.543V	SrcV	230.916V
SETTI	NG HARM	FFT		

2. 选择测量项目显示位置

旋转组合旋钮至"NOR MSR6" ->"Enter"—>旋转组合旋钮至"SrcV"-> "Enter"

图 5.68 WAVE 参数界面

ON	NOR MSR1 to	MSR6 used to :	select measure	e items to
[¹⁵⁰ 300V	display, which	located in Hor	he Page and Pi	rogram Page
\chi AC	NOR MSR1		MSR AVG	
9%	NOR MSR2			
STOP	NOR MSR3			
E IMP	NOR MSR4	VHZ		
	NOR MSR5	Vpk+		
E LOCAL	NOR MSR6	Apk+		
BAC	K			

线性型可编程交流电源

图 5.69 选定测量项目

3. 确定测量项目

主页界面,标准模式(NORM)下显示 测量项目。

	VAC	100.0V	Vrms	100.002V		
	VDC	150.0∨	Arms	0.492A		
	FRQ	1000.0Hz	Р	48.9W		
	ON PHS	OFF	VHz	1000.0HZ		
	OFF PHS	OFF	∨pk+	141.543V		
	WAVE	1-SINE	SrcV	234.486V		
SAVE RECALL SIMPLE						

5.6.2 高次谐波分析

用户可对输出电流、电压进行谐波分析。

1.选择谐波分析功能

按菜 "Menu" —>旋钮选择"测量设定" —> "Enter"。

按 "F2",选定 "HARMA" 功能。

ON	Vrms	99.999V	Apk+	0.696A
	Arms	0.492A	∨pk-	-141.222V
	Р	48.9W	Apk-	-0.708A
	S	49.2VA	VHz	1000.0HZ
	PF	0.99	AHz	1000.0HZ
	∨pk+	141.543V	SrcV	230.652V
SETTI	NG HARM	FFT		

图 5.71 波形测量参数界面

2.选择电压谐波分析

按 "F2", 选择 "U-HARM" 电压谐波 分析功能。

					Unu
L ¹⁵⁰ 300V	0.1V			0.0V	0.0%
	99.9V	100.0%		0.1V	0.1%
	0.1V	0.1%		0.0V	0.0%
	0.1V	0.1%	11	0.1V	0.1%
	0.0V	0.0%	12	0.0V	0.0%
	0.1V	0.1%	13	0.1V	0.1%
	0.0V	0.0%	14	0.0V	0.0%
	0.1V	0.1%	15	0.1V	0.1%
BAC	U-HARM	I-HARM		RE NE	EXT

图 5.72 对电压进行分析

3. 选择电流谐波分析

按"F3",选择"I-HARM"电流谐波分 析功能。

ON					
L ¹⁵⁰ 300V	0.004A			0.000A	0.0%
∼∕ AC	0.491A	100.0%		0.000A	0.1%
9%	0.001A	0.2%		0.000A	0.0%
STOP	0.001A	0.2%	11	0.000A	0.1%
	0.001A	0.1%	12	0.000A	0.0%
 IMP 	0.001A	0.1%	13	0.000A	0.1%
J~ EXT	0.000A	0.0%	14	0.000A	0.0%
E LOCAL	0.001A	0.1%		0.000A	0.1%
BAC	U-HARM	I-HARM		RE NI	EXT

线性型可编程交流电源

图 5.73 对电流进行分析

5.6.3 FFT

用户可对输出电流、电压进行 FFT 分析。

1.选择 FFT 分析功能

按菜 "Menu" —>旋钮选择"测量设定" —> "Enter"。

按"F3",选定"FFT"功能。

ON	Vrms	99.999∨	Apk+	0.696A
	Arms	0.492A	∨pk-	-141.222V
	Р	48.9W	Apk-	-0.708A
	s	49.2VA	VHz	1000.0HZ
	PF	0.99	AHz	1000.0HZ
	∨pk+	141.543V	Src∨	230.652V
SETTI	NG HARM	FFT		

图 5.74 波形测量参数界面

2. 选择电压 FFT 分析

按 "F3", 选择 "U-FFT" 电压谐波分析 功能。

	FU1	FU1 1000.0Hz		0.2%	
	Litrms	99 888//			
光 AC	Offinis	33.000V			
BA	.CK U-FFT	L-FFT			

图 5.75 对电压进行 FFT 分析

3. 选择电流谐波分析

按 "F3", 选择 "I-FFT" 电流谐波分析 功能。

ON	FI1	1000.0Hz	Ithd	0.3%
* <u>₩</u> 300V * AC	l1rms	0.491A		
BAC	K U-FFT	I-FFT		

图 5.76 对电流进行 FFT 分析

谐波分析、FFT 分析功能在 AC、AC+DC 模式中均可以使用。

5.7 系统设置

支持用户设置系统参数,可以通过系统参数的设置,对系统进行恢复出产设置、硬件自 检、多台设备联用、查看固件信息以及设置系统日期时间。

		INIT	YES OR NO
C ¹⁵⁰ 300V	USB STORE	TEST LED	YES OR NO
→ AC	VERSION	TEST IO	YES OR NO
STOP	EEROR	TEST PANEL	YES OR NO
	SYSTEM	CONFIG SAVE	SAVE POS
∘Z∘ IMP	TIME	CONFIG LOAD	LOAD POS
E LOCAL			
SET			

图 5.77 系统设置项目

5.7.1 系统主要参数(MAINTAIN)

通过系统参数设定,用户可以对系统进行出厂恢复、硬件自检、系统参数存储、加载系 统配置等设置。

表 5.14 系统参数(MAINTAIN)

项目	描述	
INT	系统恢复出厂设置	
TEST LED	前面板 LED 测试,测试前面板 LED 是否正常。	
TEST IO	通信 IO 口测试,测试 IO 是否正常。	
TEST PANEL	前面板按键测试,测试按键是否正常(需按"按键")	
COFIG SAVE	存储系统设置参数	
COFIG LOAD	加载系统设置参数	

例:恢复出厂设置

1. 选择系统与储存功能

按"Menu"键—>选中"系统与存储" 选项—>Enter。

图 5.78 选择系统与存储功能

线性型可编程交流电源

2. 选择系统初始化

 $MAINTAIN \longrightarrow INT \longrightarrow Enter \, {}_{\circ}$

3. 确认恢复出厂设置

按"F2"一>Enter 确定出厂化设置。

		INIT	YES OR NO		
C ¹⁵⁰ 300∨	USB STORE	TEST LED	YES OR NO		
- AC	VERSION	TEST IO	YES OR NO		
STOP	EEROR	TEST PANEL	YES OR NO		
	SYSTEM	CONFIG SAVE	SAVE POS		
HEN IMP	TIME	CONFIG LOAD	LOAD POS		
NO	YES				

图 5.79 选择初始化功能

5.7.2 使用存取功能

存储方式有两种:本机存储和 USB 存储。用户可以将预先设定好的参数及序列,步阶, 仿真波形保存到本机内存,也可以通过前面板的 USB 接口保存到外围存储设备。用户可以 从相应的内存加载存储的数据。

本机存取功能

设置好输出的交流电压、频率、直流电压以及波形数据,可以通过存储功能保存到本机存储通道 FLASH 中(10组)。用户可直接从内存中调用。

保存数据到本机内存示例

1. 确定需要保存的信息

按"F1",选择保存功能。

图 5.80 需要保存的信息

- 2. 选择保存位置
- 3. 确认保存

图 5.81 保存位置

线性型可编程交流电源

从本机内存中加载数据示例

1. 确定需要加载的数据

确认加载

按"F2",选择加载功能。

图 5.83 数据加载结果

NOTE1: 数据保存和加载功能,在编程输出(步阶、线路仿真、模拟序列输出)功能中,由于有大量数据设置,使 用存取功能,极大降低用户重复操作。

USB 存取功能

用户可以将波形库数据、输出参数、步阶/仿真/序列波形保存到 USB 设备中,用户可从 USB 设备中加载相应数据。

保存文件时,将在 USB 设备中自动创立保存路径,保存过程中请勿拔掉 USB 设备。 本机只支持 FAT32 数据格式。

表 5.15 存取数据类型

存取数据类型	描述
WAVE	波形库所有数据
PROG	步阶/线路仿真/模拟序列波形数据的所有设置信息
SYSTEM	系统配置的所有数据

产品用户手册

保存数据到 USB 设备示例

保存波形库中的所有数据到 USB 设备中。为了观察明显,将 11 号、12 号、13 号波形 库数据分别已经改成谐波、非标准三角波、占空比 80% 方波

图 5.86 方波

 选择 USB STORE 功能 将 USB存储功能,操作方式改为"SAVE"

	MAINTAIN	OPERATION	SAVE
C ¹⁵⁰ 300∨	USB STORE	DATA TYPE	PROG
- AC	VERSION		
STOP	EEROR		
	SYSTEM		
eze IIVIP	TIME		
	OPERA	TION SAVE	
SAVE			

图 5.87 USB 存储功能

- 选择保存的数据类型
 数据类型选择为 WAVE, 波形库。
- 3. 按 "Enter" 确认保存

图 5.88 确认数据类型

产品用户手册

ZLG 致远电子

线性型可编程交流电源

从 USB 设备中加载数据示例

将上述示例保存在 USB 设备中的波形数据加载到设备中。为效果明显,先将 11 号、12 号、13 号波形库设置为标准正弦波。

1. 选择 USB 存储功能

将 USB 存储功能,操作方式改为 "LOAD"

	MAINTAIN	OPERATION	LOAD
C ¹⁵⁰ 300∨	USB STORE	DATA TYPE	SYSTEM
- AC	VERSION		
STOP	EEROR		
	SYSTEM		
	TIME		
	DATA	TYPE WAVE	
WAVE	PROG	SYSTEM	

图 5.89 选择加载数据类型

- 2. 选择加载数据类型
- 3. 确认加载

加载完成后,可看到波形库 11 号、12 号、13 号如图 5.84、图 5.85、图 5.86 所示。

	MAINTAIN	OPERATION	LOAD
	USB STORE	DATA TYPE	WAVE
	VERSION		
	😔 w	AVELIB FILE LC	AD OK!
	SYSTEM		
	TIME		
BACł			EXCUTE

图 5.90 确认加载波形库

使用截屏功能

在任意操作界面条件下,按下"Shift"一>"F5",系统将自动截取当前屏幕,并自动保存到 USB 设备中,当显示屏上出现"PRTSRC OK!"表示截屏成功。文件的保存格式为 BMP 格式。

	VAC	50.0V	Vrms	V000.0
C 300V ∼∠ AC/DC	VDC	50.0V	Arms	0.000A
	FRQ	100.0Hz	Р	0.0VV
		PRTS	SRC OKI	
		UT1	VIIC	0.0112
	OFF PHS	OFF	∨pk+	0.061V
	WAVE	1-SINE	Apk+	0.009A
SAVE RECALL SIMPLE				

图 5.91 截屏成功提示

5.7.3 系统版本(VERSION)

每台机器出厂时都有唯一序列号,用户可以通过查询版本信息,对机器进行验货。信息 如图 5.92 所示。

	MAINTAIN	DEVICE	PWR1000L
C ¹⁵⁰ 300V	USB STORE	SERIAL	000000000000000000000000000000000000000
✓ AC		DSP VERSION	V3.1.0.25210
STOP	EEROR	MAIN FPGA	V6.1.7.0
	SYSTEM	SIDE FPGA	V3.2.0.3
E IMP	TIME	LOOP FPGA	V3.1.0.2
E LOCAL		CALIB DATE	
			UPDATE

图 5.92 系统版本信息

版本项目信息, 描述如表 5.16 系统版本(VERSION)所示。

表 5.16 系统版本(VERSION)

项目	描述
DEVICE	设备型号
SERIAL	硬件版本(机器唯一识别码)
DSP VERSION	DSP 软件版本(内部使用)
MAIN FPGA	主 FPGA 版本(内部使用)
SIDE FPGA	侧板 FPGA 版本(内部使用)
LOOP FPGA	环路 FPGA 版本(内部使用)
CALIB DATE	

5.7.4 错误提示 (EEROR)

系统发生报警,发生提示动作。详细内容参考章节 5.9 保护功能与报警识别。

5.7.5 日期时间设定

用户可对系统时间进行设置,设备在出厂后的系统时间可能不会实时同步,需要用户自 行调整。

	MAINTAIN	DATE	2009-12-14
	USB STORE	TIME	10:05:18
	VERSION		
	EEROR		
	SYSTEM		
BACł	<		

产品用户手册

线性型可编程交流电源

图 5.93 系统时间

 系统设置,请在专业人员指导下或者确定参数正常设置情况下,进行设置,以免造成 系统无法正常运行。

5.8 三相输出与多机并联

支持多机并联输出、三相输出。用户可以将 3 台同型号的设备,通过 LOCK/CLOCK 接口和系统接口连接,实现三相交流电源输出的功能。为提高电源输出能力,用户可将多台同型号的设备,通过系统接口,并联主从输出。系统信息设置如表 5.17 所示。

表 5.17 并联主从设置参数

模式	描述
STAND ALONE	设备标准单独输出。
UNION MASTER	并机主机设备。可以通过从机的 ADDR 编号对从机进行控制。 主机从机 ADDR 编号唯一。
UNION SLAVE	并机主机设备。
U PHASE	三相输出的"V相"。三相输出时作为其中的控制设备。
V PHASE	三相输出的"V相"。
W PHASE	三相输出的"W相"。

5.8.1 三相输出连线与配置

三相交流电源输出,通常有两种接法:星形接法和三角形接法。用户根据需求连接,通常接法为星形接法。此外,三相输出,还需将LOCK/CLOCK接口和系统接口连接。

● 星形接法

图 5.94 星形接法

● 三角形接法

图 5.95 三角形接法

总线接口: 三相输出需要连接总线有两组: LOCK\CLOCK 和 SYSTEM INTERFACE TO MASTER\ SYSTEM INTERFACE TO SIAVE。需要使用 BNC转接线和 VGA转接线相互连接。 如图 5.94、图 5.95 所示。

选择一种接线方法,完成布线后,配置的3台设备分别问U、V、W相。配置为U相的设备开始自动搜索V相和W相的设备。

线性型可编程交流电源

三相输出,三台设备设置,具体步骤如下。

1. 配置 W 相

第一台设备,按下"Menu"键一>选中 "系统与存储"一>"Enter"

选择"SYSTEM"—>DEV MODE 配置 为"W PHASE"—>SLAVE ADDR 配置为"1"

	MAINTAIN	DEV MODE	W PHASE
C ¹⁵⁰ 300V	USB STORE	SLAVE ADDR	
0%	VERSION		
STOP	EEROR		
++> WPHS			
N~ EXT	TIME		
Ra LOCAL			
BACł			

图 5.96 W 相配置

2. 配置 V 相

第二台设备,按下"Menu"键一>选中 "系统与存储"一> "Enter"

选择"SYSTEM"—>DEV MODE 配置 为"VPHASE"—>SLAVE ADDR 配置为"1"

	MAINTAIN	DEV MODE	V PHASE
C ¹⁵⁰ 300V	USB STORE	SLAVE ADDR	
0%	VERSION		
STOP	EEROR		
VPHS	SYSTEM		
	TIME		
Ea LOCAL			
BACł			

图 5.97 V相设置

3. 配置 U 相

第三台设备,按下"Menu"键一>选中 "系统与存储"一>"Enter"

选择"SYSTEM"—>DEV MODE 配置 为"UPHASE"—>SLAVE ADDR 配置为"1" —>SEARCH SLAVE 选择"YES"

进过上述步骤, 三相输出功能设置完毕。

	MAINTAIN	DEV MODE	U PHASE
	USB STORE	SLAVE ADDR	1
	VERSION	SEARCH SLAVE	YES OR NO
	EEROR	REMOVE SALVE	YES OR NO
UPHS			
	TIME		
BACI			

图 5.98 U相配置

5.8.2 多机并联输出

为提高功率输出能力,用户可以将多台同型号设备并联输出使用。多机并联接法如图 5.99 所示。

● 多机并联接线

图 5.99 多机并联接法

接线方式简单概述,将L线、N线、G线分别连接在一起。使用 VGA 转接线将不同机器主从接口(SYSTEM INTERFACE TO MASTER\ SYSTEM INTERFACE TO SIAVE)连接起来。

配置多机并联主从机器步骤如下。

配置从机

第 n 台从机设备,按下 "Menu"键一>选中"系统与 存储"一>"Enter"

选择"SYSTEM"—>DEV MODE 配置为"UNION SLAVE"—>SLAVE ADDR 配 置为"n"

配置主机

第 n+1 台设备,按下 "Menu"键─>选中"系统与 存储" ─> "Enter"

选择"SYSTEM"—>DEV MODE 配置为"UNION MASTER"—>SLAVE ADDR 依次配置为"1……n"的同时, SEARCH SLAVE 也依次选择 "YES"。

完成上述步骤,即可完成 多机并联输出配置。

	MAINTAIN	DEV MODE	UNION SLAVE
C ¹⁵⁰ 300V	USB STORE	SLAVE ADDR	
- AC	VERSION		
STOP	EEROR		
SLAV	SYSTEM		
eze IMP	TIME		
E LOCAL			
BAC	ĸ		

图 5.100 配置第 n 台从机

	MAINTAIN	DEV MODE	UNION MASTER
[¹⁵⁰ 300V	USB STORE	SLAVE ADDR	
- AC	VERSION	SEARCH SLAVE	YES OR NO
STOP	EEROR	REMOVE SALVE	YES OR NO
- MAST			
⊲Z< IMP →L~ EXT	TIME		
Ra LOCAL			
BACI			

图 5.101 配置主机

NOTE1: 当只使用一台设备时,如果设置成非 STAND ALONE 模式时,设备无法与其他设备通讯,将会出现"通讯 异常"报警提示。即使清楚报警,由于具有记忆功能,下次开机,依然保留上次设置并进行报警提示。用 户只需将其设置为 STAND ALONE 模式即可。

6. 通讯接口

PWR 系列可编程交流电源配置有 LAN、USB、RS232 和 GPIB 四类通信接口,用户可以任意选择一种来实现与计算机的通信。

为使远程操作交流电源操作更加方便,广州致远电子有限公司自主开发了 PWRController软件。

6.1 GPIB 接口

用户可通过 GPIB 接口向交流电源发送命令,功率计接收相关命令后,可向 PC 上位机等设备返回测量和计算数据、控制面板的设置参数和状态字节、错误代码。

6.1.1 面板组件

图 6.1 交流电源 GPIB 接口

6.1.2 GPIB 接口特性

表 6.1 GPIB 接口特性

	美国国家仪器公司
适用	● PCI-GPIB 或 PCI-GPIB+、PCle-GPIB 或 PCle-GPIB
设备	● PCle-GPIB 或 PCle-GPIB+
	● GPIB-USB-HS 使用 NI-488.2M Ver。2.8.1 或更新版本的驱动
电气和 机械规格	符合 IEEE St'd488-1978(JIS C1901-1987)

6.1.3 GPIB 配置

通过 GPIB 与 PC 通信,为了保证 GPIB 可靠、稳定的通信,请使用正版 GPIB 连接线,并且 PC 应更新驱动(若还没有更新)。

- 1. 从 PC 将 GPIB 电缆连接到交流电源后面板的 GPIB 接口,将螺钉拧紧;
- 2. 启动交流电源(开机),按下菜单键,选择"接口设定",再选择"GPIB";
- 3. 设置 GPIB 地址。GPIB 地址设置范围为 1~31;

线性型可编程交流电源

		ADDR	31
[¹⁵⁰ ₃₀₀ 150V	RS232		
∼∠ AC			
••• 0%	LAN		
ALM	10		
ez: IMP			
-≫~ EXT			
🕂 USB			
🕀 LOCK			
EDIT	-		

图 6.2 GPIB 地址设置

4. 确定,退出。

注意,当交流电源正在进行 GPIB 通信时,不要修改 GPIB 地址。

6.2 RS232 接口

用户可通过 RS-232 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 上 位机返回测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

6.2.1 面板组件

图 6.3 交流电源 RS232 接口

6.2.2 RS232 接口特性

表 6.2 RS232 接口

接口类型	D-Sub 9-pin(插头)
电气规格	符合 EIA-574(EIA-232(RS-232)9 针标准)
波特率	可配置 1200、2400、4800、9600、19200

6.2.3 RS232 配置

通过 RS232 与 PC 通信,为了保证通信可靠、稳定,请使用正版连接线。

- 1. 从 PC 将 RS-232 电缆连接到交流电源后面板的 RS-232 接口,将螺钉拧紧;
- 2. 启动交流电源(开机),按下菜单键,选择"接口设定",在选择"RS232";
- 3. 配置 RS232 参数。设置串口波特率、数据格式;

线性型可编程交流电源

	GPIB	BAUD RATE	115200
[¹⁵⁰ ₃₀₀ 150∨		PARITY MODE	NONE
- AC	LAN	STOP BIT	1 bit
ALM	0	DATA WIDTH	8 bit
E IMP			
≻ EXT			
🕂 USB			
B LOCK			
EDI	Г		

图 6.4 RS232 参数设置

4. 确定,退出。

注意,在使用 RS232 进行远程控制时,不建议使用其它通信接口同时控制电源。

6.3 USB 接口

用户可通过 USB 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 返回 测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

6.3.1 面板组件

图 6.5 交流电源 USB 接口

6.3.2 USB 接口特性

表 6.3 USB 接口特性

项目	说明
端口数	1
连接器	B型连接器(插座)
电气与机械规格	兼容 USB Rev.2.0
支持的传输模式	高速和全速
支持的协议	自定义协议
PC 系统需求	可支持 USB 的 Windows7(32 位/64 位)、 Vista(32 位)、XP(SP2 以上版本、32 位)

产品用户手册

PWR1000L 线性型可编程交流电源

6.3.3 USB 配置

用户无需在交流电源上设置 USB 接口参数。

6.4 Ethernet 接口

用户可通过 Ethernet 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 返回测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

6.4.1 面板组件

图 6.6 交流电源 Ethernet 接口

6.4.2 Ethernet 接口特性

表 6.4 Ethernet 接口特性

项目	说明
端口数	1
接口类型	RJ-45 接口
电气和机械规格	符合 IEEE8.2.3 标准
传输系统	以太网(100BASE-TX、10BASE-T)
传输速率	最大 100Mbps
通信协议	TCP/IP
支持服务	DHCP、远程控制

6.4.3 Ethernet 配置

- 1. 从 PC 将 Ethernet 电缆连接到交流电源后面板的 Ethernet 接口;
- 2. 启动交流电源(开机),按下"Menu"键,选择"接口设定",在选择"LAN";
- 3. 设置 Ethernet 的 IP 地址(交流电源具有记忆功能);

线性型可编程交流电源

	GPIB	IP ADDR	192.168.4.252
[¹⁵⁰ ₃₀₀ 150V	RS232	MASK	255.255.255.0
0%	LAN	GATE	192.168.4.1
	0	DHCP	OFF
°Z° IMP			
→>> EXT			
tock			
EDIT	-		

图 6.7 Ethernet 地址设置

4. 确定,退出。

注意,当交流电源正在进行 Ethernet 通信时,不建议使用其它通信接口同时控制交流电源。

7. 通讯接口

PWR 系列可编程交流电源配置有 LAN、USB、RS232 和 GPIB 四类通信接口,用户可以任意选择一种来实现与计算机的通信。

为使远程操作交流电源操作更加方便,广州致远电子有限公司自主开发了 PWRController软件。

7.1 GPIB 接口

用户可通过 GPIB 接口向交流电源发送命令,功率计接收相关命令后,可向 PC 上位机等设备返回测量和计算数据、控制面板的设置参数和状态字节、错误代码。

7.1.1 面板组件

图 7.1 交流电源 GPIB 接口

7.1.2 GPIB 接口特性

表 7.1 GPIB 接口特性

	美国国家仪器公司
适用	● PCI-GPIB 或 PCI-GPIB+、PCle-GPIB 或 PCle-GPIB
设备	● PCle-GPIB 或 PCle-GPIB+
	● GPIB-USB-HS 使用 NI-488.2M Ver。2.8.1 或更新版本的驱动
电气和 机械规格	符合 IEEE St'd488-1978(JIS C1901-1987)

7.1.3 GPIB 配置

通过 GPIB 与 PC 通信,为了保证 GPIB 可靠、稳定的通信,请使用正版 GPIB 连接线,并且 PC 应更新驱动(若还没有更新)。

- 5. 从 PC 将 GPIB 电缆连接到交流电源后面板的 GPIB 接口,将螺钉拧紧;
- 6. 启动交流电源(开机),按下菜单键,选择"接口设定",再选择"GPIB";
- 7. 设置 GPIB 地址。GPIB 地址设置范围为 1~31;

线性型可编程交流电源

		ADDR	31
E ¹⁵⁰ 150V			
∼⁄ ac	N3232		
0%	LAN		
	10		
®Z∗ IMP			
⊷»~ EXT			
🕂 USB			
C LOCK			
EDIT	-		

图 7.2 GPIB 地址设置

8. 确定,退出。

注意,当交流电源正在进行 GPIB 通信时,不要修改 GPIB 地址。

7.2 RS232 接口

用户可通过 RS-232 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 上 位机返回测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

7.2.1 面板组件

7.2.2 RS232 接口特性

表 7.2 RS232 接口

接口类型	D-Sub 9-pin(插头)
电气规格	符合 EIA-574(EIA-232(RS-232)9 针标准)
波特率	可配置 1200、2400、4800、9600、19200

7.2.3 RS232 配置

通过 RS232 与 PC 通信,为了保证通信可靠、稳定,请使用正版连接线。

- 5. 从 PC 将 RS-232 电缆连接到交流电源后面板的 RS-232 接口,将螺钉拧紧;
- 6. 启动交流电源(开机),按下菜单键,选择"接口设定",在选择"RS232";
- 7. 配置 RS232 参数。设置串口波特率、数据格式;

线性型可编程交流电源

	GPIB	BAUD RATE	115200
[¹⁵⁰ ₃₀₀ 150∨		PARITY MODE	NONE
- AC	LAN	STOP BIT	1 bit
ALM	0	DATA WIDTH	8 bit
E IMP			
DAT			
EDIT	Г		

图 7.4 RS232 参数设置

8. 确定,退出。

注意,在使用 RS232 进行远程控制时,不建议使用其它通信接口同时控制电源。

7.3 USB 接口

用户可通过 USB 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 返回 测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

7.3.1 面板组件

- 图 7.5 交流电源 USB 接口
- 7.3.2 USB 接口特性

表 7.3 USB 接口特性

项目	说明	
端口数	1	
连接器	B型连接器(插座)	
电气与机械规格	兼容 USB Rev.2.0	
支持的传输模式	高速和全速	
支持的协议	自定义协议	
PC 系统需求	可支持 USB 的 Windows7(32 位/64 位)、 Vista(32 位)、XP(SP2 以上版本、32 位)	

产品用户手册

PWR1000L 线性型可编程交流电源

7.3.3 USB 配置

用户无需在交流电源上设置 USB 接口参数。

7.4 Ethernet 接口

用户可通过 Ethernet 接口向交流电源发送命令,交流电源接收相关命令后,可向 PC 返回测量和计算数据、控制面板的设置参数和状态字节、错误代码等数据。

7.4.1 面板组件

图 7.6 交流电源 Ethernet 接口

7.4.2 Ethernet 接口特性

表 7.4 Ethernet 接口特性

项目	说明
端口数	1
接口类型	RJ-45 接口
电气和机械规格	符合 IEEE8.2.3 标准
传输系统	以太网(100BASE-TX、10BASE-T)
传输速率	最大 100Mbps
通信协议	TCP/IP
支持服务	DHCP、远程控制

7.4.3 Ethernet 配置

- 5. 从 PC 将 Ethernet 电缆连接到交流电源后面板的 Ethernet 接口;
- 6. 启动交流电源(开机),按下"Menu"键,选择"接口设定",在选择"LAN";
- 7. 设置 Ethernet 的 IP 地址 (交流电源具有记忆功能);

线性型可编程交流电源

	GPIB	IP ADDR	192.168.4.252
[¹⁵⁰ 150V	RS232	MASK	255.255.255.0
- AC	LAN	GATE	192.168.4.1
ALM	0	DHCP	OFF
E IMP			
tock			
EDIT	-		

图 7.7 Ethernet 地址设置

8. 确定,退出。

注意,当交流电源正在进行 Ethernet 通信时,不建议使用其它通信接口同时控制交流电源。

<u>产品用户手册</u>

线性型可编程交流电源

<u>产品用户手册</u>

8. 保护功能与报警识别

PWR 系列可编程交流电源,提供了全方面的保护特性。在机器输出短路或者发生机器 故障,会触发系统报警,并执行保护动作。用户可根据提示,识别机器报警类型。

8.1 硬件报警与异常处理

硬件报警提示如表 8.1 硬件报警识别与紧急处理建议所示。

错误 ID	错误提示	错误描述	描述 处理建议	
1011	Auxiliary power error	辅助模组电源异常	常 重启后如果仍然存在异常, 请联系厂商进行维修	
1021	Soft start error	PFC 模组异常	关机,请联系厂商进行维修	
1031	DCDC over voltage protect	PSFB 模组输出过压	关机,请联系厂商进行维修	
1041	DCDC fuse broken	PSFB 模组保险丝熔断	关机,请联系厂商进行维修	
1051	Hardware over current protect	逆变模组输出过流	保持开机充分散热 3 分钟, 关机检查	
1061	Module over temperature	PFC 模组过温	保持开机充分散热 3 分钟, 关机检查	
1062	Module over temperature	PSFB 模组过温	保持开机充分散热 3 分钟, 关机检查	
1063	Module over temperature	逆变模组过温	保持开机充分散热 3 分钟, 关机检查	
1071	Fan error	风扇模组异常	关机检查	
1081	LPA over current protect	线性功放输出过流	保持开机充分散热 3 分钟, 关机检查	
1091	SOA protect	线性功放 SOA 保护	关机检查	
1101	Self-checking failed 开机自检错误 关机检查		关机检查	
2011	Module communicate fail	硬件模块通信错误	关机检查	

表 8.1 硬件报警识别与紧急处理建议

ZLG 致远电子

线性型可编程交流电源

8.2 输出报警与异常处理

输出异常报警如表 8.2 输出报警识别与紧急处理建议。

表	8.2	输出报警识别与紧急处理建议

错误 ID	错误提示	错误描述	处理建议	
4011	Output AC over limit	AC 超出上限值	检查电源限值设置,检查负载	
4021	Output AC lower limit	AC 低于下限值	检查电源限值设置,检查负载	
4031	Output DC over limit	DC 超出上限值	检查电源限值设置,检查负载	
4041	Output DC lower limit	DC 低于下限值	检查电源限值设置,检查负载	
4051	Output Current over limit	电流超出限定	检查电源限值设置,检查负载 以及是否短路	
4061	Output IPEAK exceed limit	电流峰值超出限定	检查电源限值设置,检查负载	
4071	Output Power over limit	功率超出限定	检查负载	
4081	Source Voltage exceed limit	输入源电压超限	关机,检查供电输入是否在要 求范围内	
4091	Source Frequency exceed limit	输入源频率超限	关机,检查供电输入是否在要 求范围内	
4101	Source Voltage exceed limit	输入源电压超限	关机,检查供电输入是否在要 求范围内	

8.3 软件报警与异常处理

软件错误报警识别如表 8.3 软件报警识别与紧急处理建议。

表 8.3 软件报警识别与紧急处理建议

错误 ID	错误提示	错误描述	处理建议	
3011	Internal storage error	内部存储错误	停止使用所有参数保存和恢 复功能情况下可继续使用,否 则重启电源	
2021	Slave machine error	主从模式: 从机告警	释放从机,查看并排除从机告 警错误	
2012	Main machine lost slave	主从模式: 主机丢失从机	检查主从机通信连接线,并重 新连接从机	
2013	Slave machine lost main	主从模式: 从机丢失主机	检查主从机通信连接线,并重 新连接从机	
2014	Module communicate fail	软件通信错误	重启电源	

8.4 警报清除

警报清除(ALM CLR)功能,可以清除所有保护功能引起的警报。

报警功能启用时,在屏幕的右侧状态栏会显示"ALM"并发出报警声,同时输出状态 切换到"OFF"状态。

图 8.1 警告提示

报警清除步骤

当产品在使用过程中出现报警情况时,要及时排除报警产生原因,再使用报警清除功能。

].SHIFT+CLR,出现如下界面。

	MAINTAIN	4011	Output AC over limit	
C150 300V	USB STORE			
0%	VERSION			
STOP				
	SYSTEM			
·Z· IMP	TIME			
Re LOCAL				
				CLEAR

图 8.2 告警 ID 和描述

- 2. 从提示中可以看到,警报提示原因是输出 AC 电压超过了限定值。排除原因后,可清除警报。
- 3. 在 ERROR 显示界面,按屏幕 "CLEAR"下方对应的 F5 按键。如果存在多个报警,每 按一次 F5 可以清除一个报警。

报警时的处理方法

报警发生时,请按以下方法处理,然后开机重新运作。

● 负载为线性时

超过额定电流和功率时,首先检查参数设定值,确认设定无误后,减小负载。 超出额定电压时,检查输入电源,设置电压输出值。

- 负载为容性时
- 产品用户手册

线性型可编程交流电源

降低峰值电流。

排除报警原因,报警依然存在,请联系我司工作人员,我们将协助您进行故障排除。

PWR1000L 线性型可编程交流电源

9. 免责声明

广州致远电子股份有限公司隶属于广州立功科技股份有限公司。本着为用户提供更好服务的原则,广州致远电子股份有限公司(下称"致远电子")在本手册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性,致远电子不能完全保证该文档在任何时段的时效性与适用性。致远电子有权在没有通知的情况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬的用户定时访问致远电子官方网站或者与致远电子工作人员联系。感谢您的包容与支持!