User Manual

CAN 时序分析软件用户手册

ZDS4000/ZDS5000/ZUS6000 系列示波器 UM01010101 1.03 Date:2024/5/11

类别	内容
关键词	CAN、时序分析、位时间
摘要	主要介绍ZDS4000 Plus/ZDS5000/ZUS6000示波器上CAN时序分析软件
	的应用,其测试项目遵循通用全球CAN总线测试规范GMW14241的测
	试标准。

CAN 时序分析软件用户手册

ZDS4000/ZDS5000/ZUS6000 系列示波器

修订历史

版本	日期	原因
V1.00	2017/07/19	创建文档
V1.01	2019/03/13	更新文档页眉页脚、"销售与服务网络"内容和新增"免责声
		明"内容
V1.02	2019/04/17	更新文档页眉页脚、"销售与服务网络"内容和新增"免责声
		明"内容
V1 02	2023/07/10	1、更新文档页眉页脚
v 1.03		2、增加支持 ZDS5000、ZUS6000 系列示波器说明

目 录

1.	概述	1
	1.1 主要特点	1
	1.2 测量项目	1
	1.3 软件界面	1
2.	测试项目	
	2.1 显性位和隐性位电压测试	
	2.2 位时间(Bit Timing)测试	
3.	参数设置	
4	∽	6
5	结果导出	7
6		9
7	(2)(2)(1)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)	10
•••	75927 •••1	10

1. 概述

CAN 时序分析软件是一款能够自动测试 CAN 总线电气特性的插件,适用于所有 CAN 总线产品的硬件测试。测试标准遵循通用全球 CAN 总线测试规范 GMW14241,软件可快速 分析并输出测试结果 (Pass/Fail),自动生成测试报表。目前在 ZDS4000、ZDS5000、ZUS6000 系列示波器中支持,用户可到致远仪器网官下载最新固件免费升级。

1.1 主要特点

- 遵循通用全球 CAN 总线测试规范 GMW14241
- 支持位时间(Bit Timing)测试
- 支持显性位和隐性位电压测试
- 具备标准帧、扩展帧 ID 筛选功能,可有针对性的测试特定节点
- 支持长时间压力统计,验证 CAN 设备的稳定性
- 自动生成测试报告

1.2 测量项目

CAN 时序分析软件的测试项目如表1所列。

表 1 CAN 时序分析软件测量项目

测量项目	描述
Dominant.x	显性位电压测试 注 1
Recessive.x	隐性位电压测试 注 1
Bit Time(MIN,MAX)	位时间测试,输出统计过程中出现的最小值和最大值

注 1: "x"可为 CAN_DIFF、CAN_L 或 CAN_H,分别表示差分或单端线电压。

1.3 软件界面

CAN 总线时序分析软件的测试结果如图 1 所示。

CAN 时序分析软件用户手册 ZDS4000/ZDS5000/ZUS6000 系列示波器

User Manual

图 1 CAN 时序分析软件界面

2. 测试项目

CAN 总线时序分析软件的测试项目如表 1 所列,下面将对每一个测试项做详细说明。

2.1 显性位和隐性位电压测试

CAN 总线的显性位和隐性位的电压值,是通过计算电压方向的直方图获取的。根据测试模式的不同(CAN 差分、CAN_H 单线或 CAN_L 单线),显性位和隐性位测试结果会和如图 2 所示的顶部值或低部值对应。

图 2 底部值与底部值计算原理示意图

根据 GMW14241 规范 4.1 节描述,显性位电压(Dominant)的范围如表 2 所列,隐性位电压(Recessive)的范围如表 3 所列,若测量但超过该范围,软件会分析并报告测量结果为不通过(Fail)。

	Value				
n	Minimum	Nominal	Ma		

表 2 显性位(Dominant) 电压范围

notation	Minimum	Nominal	Maximum	
VCAN H	2.75 V	2 5 V	4.5 V	
VCAN_H	(preferred: 3.0 V)	5.5 V	(preferred: 4.25 V)	
VCANI	0.5 V	15 V	2.25 V	
VCAN_L	(preferred: 0.8 V)	1.3 V	(preferred: 2.0 V)	
Vdiff	1.5 V	2.0 V	3.0 V	

表 3 隐性位(Recessive)电压范围

Notation	Value			
	Minimum	Nominal	Maximum	
VCAN_H	2.0V	2.5 V	3.0V	
VCAN_L	2.0V	2.5 V	3.0V	
Vdiff	-120 mV	0	+12 mV	

2.2 位时间(Bit Timing)测试

位时间是指1个 bit 的时间, CAN 总线位时间测试原理如图3所示,参考GMW14241 规范第4章,测量过程示波器会测量CAN 差分信号的20-30个 bit (从上升沿到上升沿)的 时间并求平均,重复多次(示波器捕获的波形越多,分析的样本数越多),最终分析出多次 测量的位时间的最小值和最大值并输出。若测量值超出规范标定范围(根据CAN 总线不同

允许误差可为 0.35%、0.45%或 0.5%,如何选择可参考表 4 中位时间误差解析),软件会分析并报告测量结果为不通过(Fail)。

图 3 位时间测试原理

3. 参数设置

总线 设置	信源选择 CH1~	总线类型 CAN DIFF	波特率(K) 500.00 —	Dominant(MIN) 1.50	Dominant(MAX) 3.00
	Recessive(MIN) -0.50	Recessive(MAX) 0.50	KXKOzXI	Kan Yan Yan Yan Yan Ya	XX) o (K)
参数 设置	筛选条件 无♀	阈值(V) 0.90	位时间误差 0.45% —	恢复默认	

使用该插件进行测试前,需要进行参数设置,如图4所示。

图 4 参数设置

各个参数设置项代表的说明如表4所列。

表4 参数解析

参数	描述					
信源选择	CAN 信号探头输入通道: CH1~CH4					
总线类型	根据总线的测试方法不同可选: CAN_L 、CAN_H、 CAN_DIFF					
波特率	测量前要先设置理论波特率值,默认值 500k,可自定义设置					
Dominant (MAX)	显性位允许的电压值上限,测量值大于该值时判定为 Fail,正常用默认值即可。					
Dominant (MIN)	显性位允许的电压值下限,测量值小于该值时判定为 Fail,正常用默认值即可。					
Recessive (MAX)	隐性位允许的电压值上限,测量值大于该值时判定为 Fail,正常用默认值即可。					
Recessive (MIN)	隐性位允许的电压值下限,测量值小于该值时判定为 Fail,正常用默认值即可。					
	无:对所有 CAN 帧进行测量;					
筛选条件	标准帧: 指定 CAN 帧的某个 ID 进行位时间测试;					
	扩展帧:指定 CAN 帧的某个 ID 进行位时间测试。					
崎 D	当筛选条件选择的是标准帧和扩展帧时,会出现此参数,帧 ID 参数的作用是,					
坝 ID	可以指定设置总线的某个 ID 进行位时间测试。					
	默认值 0.9v(可调节),此项参数在总线类型选择为 CAN_DIFF 时有效。当总线					
阈值	类型为 CAN_L 和 CAN_H 时,该项不可设置,阈值为显性电平电压和隐性电平					
	电压的中间值(即 50%)。					
	是指位时间参考值允许的误差,有三个选择,分别是 0.35%、0.45%、0.50%,					
台时间温差	当 CAN 总线是单线时,选择 0.35%; 当 CAN 总线是双线高速时,选择 0.45%;					
11111111111111111111111111111111111111	当 CAN 总线是双线中速时,选择 0.5%。它们的选择参考 GMW14241 规范的					
	4.3.10节、4.1.10节和4.2.10节的规定。					

4. 统计测量

统计测量可以长时间测量 CAN 总线的稳定性,比如可以指定测量 1000 帧报文。应用 时可以指定测试停止条件和失败操作(即测试 Fail 时要执行的动作)。

(1) 停止条件

停止条件即测试过程当到达所设置的停止条件时立即停止,如图5所示。

图 5 测试停止条件

(2) 失败操作

失败操作即若波形进行测试过程中无法通过测试(Fail)时,将执行的操作。失败操作如图 6 所示。

图 6 失败操作

失败操作包括:

声音提示:即当出现测试不通过项时,系统会发出警报声(蜂鸣器)提醒;

导出报表:即当出现测试不通过项时,系统会自动进行数据导出。

两项可以同时选择,若一项都不选择,则若出现失败项不做任何提醒。

(3) 历史统计

当设置好停止条件,失败操作后,点击【历史统计】(运行/停止统计)可对测量结果进 行统计,此时将【信息显示】打开,可以看到统计的结果。如图7所示:

图 7 历史统计结果

5. 结果导出

测试完成后可对所测试的波形和数据进行导出。导出的"网页报表"文件可使用网页打开,导出的"CSV"文件可使用 Excel 打开。网页报表导出文件的部分截图如图 8 所示。

Guangzhou Zhiyuan Electronics Co., Ltd

CAN Test Report

Overall Result: Pass

Device Name	ZDS5054Pro		
SW Version	4.0.2.230306		
Serial Number	8208901152207210011		
Test Date	2023-07-14 16:49:15		
Test Statistics	Total(wfs): 8, Pass(wfs): 8, Fail(wfs): 0		
Test Result	Total: 3, Pass: 3, Fail: 0		

Scope Report

INDEX	NAME	PARAM.MIN	PARAM.MAX	STAT.MIN	STAT.MAX	VALUE	STATUS
1	Dominant.CAN DEFF	1.500V	3.300V	3.280V	3.280V	3.280V	Pass
2	Recessive.CAN DEFF	-500.0mV	500.0mV	0.000mV	0.000mV	0.000mV	Pass
3	Bit Time(MIN,MAX)	1.991us	2.009us	2.000us	2.000us	2.000us, 2.000us	Pass

Total Result: Pass

Report Detail

图 8 网页报表效果

广州致远仪器有限公司

User Manual

6. 测试指南

- 1. 将 CAN 信号用差分探头接到示波器的通道上。也可以用普通探头进行测量,但此时探头接的信号是 CAN_H 或 CAN_L 信号。设置好示波器能稳定显示 CAN 波形
- 2. 若需要显示 CAN 解码数据,可选该步骤。点击【Decode】进入解码界面,选择【解码 类型】为 CAN,设置【协议参数】,设置好后,会出现的 CAN 协议解码界面。
- 3. 打开 CAN 时序分析插件,点击【Analyze】进入分析界面,选择【时序分析】为 CAN, 打开【功能使能】为"ON"状态,选择【协议类型】为 CAN,进行【参数设置】,设 置好后,会出现 CAN 总线时序特性测试界面。

注: ZUS6000 系列示波器通过点击屏幕【分析】-【解码1】进入解码界面;点击【分析】-【时序分析】进入分析界面。

7. 免责声明

本着为用户提供更好服务的原则,广州致远仪器有限公司(下称"致远仪器")在本手 册中将尽可能地为用户呈现详实、准确的产品信息。但介于本手册的内容具有一定的时效性, 致远仪器不能完全保证该文档在任何时段的时效性与适用性。致远仪器有权在没有通知的情 况下对本手册上的内容进行更新,恕不另行通知。为了得到最新版本的信息,请尊敬的用户 定时访问致远仪器官方网站或者与致远仪器工作人员联系。感谢您的包容与支持!

Empower efficient testing, co-create a better life

广州致远仪器有限公司

更多详情请访问 www.zlgtmi.com

欢迎拨打全国服务热线 400-888-4005

