

CAN节点的测试与标定(专家版)

CANScope-Pro分析仪高手宝典(下)

CANScope 成功应用客户榜

1.	前言			1
2.	测试	设备简	近介	2
	2.1	С	ANScope 功能特点与型号分类	2
	2.2	报	之界面	4
	2.3	万	波器界面	4
	2.4	波	7形界面	5
	2.5	波	7形与报文联动观察界面	5
	2.6	С	ANStressZ 模拟信号测试扩展板	6
3.	测试	内容根	我述	8
4.	试验	准备		9
	4.1	ដ	验前填写表格	9
	4.2	ដ	验报告须知	9
		4.2.1	试验设备、工具、工装、物料	9
		4.2.2	试验报告结果格式	.10
5.	试验	程序		11
	5.1	牧]理层一致性测试	11
		5.1.1	输出电压测试	.11
		5.1.2	终端电阻变化时的输入阈值压力测试	.15
		5.1.3	内阻测试	.17
		5.1.4	输入电容测试与最大电容压力测试	.20
		5.1.5	最大最小供电电压测试	.23
		5.1.6	信号边沿测试	.24
		5.1.7	信号特征测试	.28
		5.1.8	位时间测试	.31
		5.1.9	波特率容忍度测试	.35
		5.1.10	容错性能测试	.38
		5.1.11	内部延时测试与网络延迟评估	.44
	5.2	锐	路层一致性测试	46
		5.2.1	采样点测试	.46
		5.2.2	CAN2.0B 兼容测试	.49
		5.2.3	报文的 DLC 测试	.50
		5.2.4	报文标示符测试	.52
		5.2.5	报文发送方式测试	.53
		5.2.6	总线负载压力测试	.56
	5.3	C	AN 应用层一致性测试	58
		5.3.1	报又友迗周期测试	.58
~	卢 十	5.3.2	BusOff 后的处埋	.60
6.	免贡	声明		63

目录

1. 前言

本文的主要目的是指导 CAN 总线的研发与测试人员,对 CAN 节点或者网络进行测试标定,可用于出厂测试与购买测试,弥补国内此类文章的空白。由于篇幅有限,如果读者还不熟悉 CAN 总线原理,请先阅读《项目驱动——CAN-bus 现场总线基础教程》。

本文所有测试与分析都是基于广州致远电子股份有限公司生产的专业版CAN线分析仪—— CANScope-Pro。测试方案参考 ISO11898 标准与汽车测试规范。若您有不解或者文章没有提及 的,欢迎与我联系: Email: CANScope@zlg.cn

本文可用于 CAN 总线研发、测试、技术支持维护人员培训。工程人员,以自动测试软件为基础来进行操作方面的讲解。

若在现场遇到问题需要排查,请查看《CAN 总线故障诊断与解决(专家版)》

2. 测试设备简介

CANScope 分析仪是 CAN 总线开发与测试的专业工具, 集海量存储示波器、网络分析仪、 误码率分析仪、协议分析仪及可靠性测试工具于一身, 并把各种仪器有机的整合和关连; 重新 定义 CAN 总线的开发测试方法, 可对 CAN 网络通信正确性、可靠性、合理性进行多角度全 面的评估。如图 2.1 所示。

图 2.1 CANScope 分析仪

超长的波形存储、可靠的报文记录、精准的出错定位、实时的示波器显示、丰富的高层协 议分析帮助用户快速定位故障节点, 解决 CAN 总线应用的各种问题, 是 CAN 总线开发测试 的有效工具。图 2.2 为其测量原理。即将信号分为模拟通道和数字通道进行处理, 然后再结合 后存储。提供给上位机软件分析。

图 2.2 CANScope 内部原理

2.1 CANScope 功能特点与型号分类

- 1. 100MH示波器,实时显示总线状态,并且能进行 13000帧波形的存储
- 2. 所有报文(包括错误帧)的记录、分析,全面把握报文信息
- 3. 强大的报文重播,准确重现总线错误
- 4. 强大的总线干扰与测试,有效测试总线抗干扰能力
- 5. 支持多种高层协议,图形化仿真各种仪表盘

- 6. 实用的事件标记,较大限度存储用户关心的波形
- 7. 从物理层、协议层、应用层对 CAN总线进行多层次分析

8. 支持软硬件眼图,辅助评估总线质量,并且能通过眼图准确定位问题节点

模块	功能项	CANScope-standard	CANScope-Pro		
	测量通道	1个	1个		
	通信接口	480Mbps	480Mbps		
	示波器采样率	100M	100M		
	示波器存储容量	2K	8K		
硬	波形存储容量	512M	512M		
件	波形记录个数	13000 个	13000 个		
基	模拟带宽	60MHz	60MHz		
本	垂直测量范围	1V-50V	1V-50V		
功	实时示波器	支持	支持		
能	报文接收	支持	支持		
	报文发送	支持	支持		
	任意序列发送	支持	支持		
	终端电阻开关	支持	支持		
	自动侦测波特率	支持	支持		
	硬件眼图	支持	支持		
硬	网络分析	不支持	支持		
件	模拟干扰	不支持	支持		
扩	数字干扰	不支持	支持		
展	事件标记	不支持	支持		
功	对称性测试	支持	支持		
能	终端电阻可调	不支持	支持		
	网络负载电容可调	不支持	支持		
	SDK 开放	支持	支持		
	帧统计	支持	支持		
	流量分析	支持	支持		
软	总线利用率	支持	支持		
件	报文重播	支持	支持		
功	高层协议分析	支持	支持		
能	自定义协议分析	支持	支持		
	网络共享	支持	支持		
	虚拟硬件	支持	支持		
	软件眼图	不支持	支持		

表 1 CANScope 分类

软件主界面如图所示。分别为报文串口,实时波形窗口,记录波形窗口,眼图窗口。所以

CANScope 相当于 CAN 接口卡、示波器、逻辑分析仪三者合一的综合分析仪器,能解决 CAN 总线绝大部分的问题。

	NScope(高线)
政策率 S00 Kbps 自生义成等率 製工 标准数据域 数据 000 00 00 00 00 00 00 00 00 00 00 00 00	2000 変出的語 1 ms 1000 変出的語 1 ms 1000 変出的語 2 ms 1000 変出的 1000 変出 1000 変出 1000 変 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 100000 100000 100000 100000 100000 1000000 100000000
	× CAN 示波器 🚽 中 ×
	CAN ELE CAN
I CAN 波形 ×	× CAN 眼图 ···································
●名加口 ● 20005 30005 40005 ● CAN-H ● 10005 20005 30005 40005 ● CAN-H ● 10005 ● 10005 20005 40005 ● CAN-H ● 10005 ● 10005 ● 10005 ● 10005 ● CAN-B ● 10005 ● 10005 ● 10005 ● 10005 ● CAN-B ● 10005 ● 10005 ● 10005 ● 10005 ● CAN-B ● 10005 ● 10005 ● 10005 ● 10005 ● 10005 ● CAN-B ● 10005 ● 10005 ● 10005 ● 10005 ● 10005 ● 10005 ● CAN-B ● 10005 <th>Eye Info Votage Quality count 0 one :1.33V Qfact 1 3.356% -30% :16400n s.tdw 30% ample 3% SMR 0.01% dB 130% 150% 2.82V 0.5V/div apple 3% .0.3122V ER :46 dB 160% 1.82V 1.82V 1.82V .0.3122V ER :46 dB .0.3122V 1.82V .0.3122V .0.</th>	Eye Info Votage Quality count 0 one :1.33V Qfact 1 3.356% -30% :16400n s.tdw 30% ample 3% SMR 0.01% dB 130% 150% 2.82V 0.5V/div apple 3% .0.3122V ER :46 dB 160% 1.82V 1.82V 1.82V .0.3122V ER :46 dB .0.3122V 1.82V .0.3122V .0.

图 2.3 CANScope 软件界面

2.2 报文界面

CANSCOPE 的 CAN 报文界面可以容纳无数个 CAN 帧,只要您的 PC 内存足够大,就可以 一直保存下去,并且有**导出功能**。这个 CAN 报文界面与那些带控制器的设备(比如 USBCAN) 不同,**它可以实时捕获总线错误状态**,就是说可以记录错误帧。比如在"状态"栏里面输入"错 误"即可以将所有错误帧筛选出来。并可以很方便地进行报文发送(重播)。另外还有一个重要 的选项,就是总线应答,如果不勾选,则 CANSCOPE 是作为一台只听设备,不会应答总线上 的报文,如果勾选,则 CANSCOPE 能作为一台标准的 CAN 节点工作,可以发送数据。

	A) 📂 🖵	12 🚽	# 🗆 (• (🖸										CANScope	(离线)			
	<i>S</i>	开始	高级	报文	测试	Ħ	淳 波形	眼圈	示波器	PO	RT板								
			波特率	500 Kbps		+	□ 自定义波料	寺率	×	型 标准数	据帧	▼ 数据	00 00	0 00 00 0	0 00 00 00	发送间隔	1 ms		
		-	采样比	100:1		Ψ.	报文/波形有	評估(10%:90	0%) ¢đ	ID 000		重复	欠数:	L		递增选择	帧ID和数据	1送増	- 2
	开启	停止	采样率	50 M			-0		DI	.C 8		发送	微	无限	+	🔽 总线	应答		2
	ž	制				采集设									发送射	ŝ			
	CA	N 报文	×	网络共享	C 🖪	AN 波	🗄 🚺 CAN	▼眼图	🔳 CAN 示	波器									
Ĩ	ъГ	<u> </u>	4 * 4 U		の 元 西 石	波特漆	与自动量程	包白赤	液展 🔽 🛪	网络过油	2 清空2	51 9 5 4	A 1						
	序号	••••	时间			状态		传输方向	5	帧类型		数据	行度		帧ID	¢ć	数据		_
	在此久	上输入	マ 在此	处输入文	\$ 7	在此	上输入 マ	在此处。	俞入 マ	在此处新	ì) 7	在此众	上输入	7	在此处输入。	字在	此处输入	文字	7
	N	52,492	00:01	:27.718	973	成功		接收 (本)	地) 打	广展数据		8		0	E05FF0A H	01	03 02 01	00 00 0	
	N.	52,493	00:01	:27.721 (593	成功		接收 (本)	地) 打	广展数据	帧	8		0	E07FF01 H	43	43 43 FF	FF FF FF	
	N.	52,494	00:01	:27.722 (569	成功		接收 (本i	地) 打	广展数据	帧	8		0	E07FF0B H	43	43 43 FF	FF FF FF	
	N .	52,495	00:01	:27.725	557	成功		接收 (本)	地) 打	广展数据	帧	8		0	E05FF02 H	01	03 02 01	00 00 0	
	N	52,496	00:01	:27.725	995	成功		接收 (本)	地) 打	广展数据	峧	8		0	E05FF0C H	07	01 02 01	00 00 0	
	N.	52,497	00:01	:27.726	989	成功		接收 (本)	地) 打	广展数据	帧	8		0	E06FF07 H	BE	OC BA 0	C BC OC	
	N.	52,498	00:01	:27.728	363	成功		接收 (本i	地) 打	广展数据	帧	8		0	E05FF09 H	06	03 02 01	00 00 0	
	N.	52,499	00:01	:27.728 (585	成功		接收 (本)	地) 打	广展数据	顷	8		0	E07FF05 H	42	42 42 FF	FF FF FF	
	N.	52,500	00:01	:27.728	955	成功		接收 (本)	地) 打	广展数据	帧	8		0	E06FF0A H	B8	0C B5 0	C B7 0C	7
	N	52,501	00:01	:27.729	241	成功		接收 (本)	地) 打	广展数据	帧	8		0	E07FF03 H	44	43 43 FF	FF FF FF	
1	N.	52 502	00:01	:27.729	91.3	F\$JJh		接收 (本社	sta) ‡	亡民数据	崎	8		0	F01FF06 H	BA	OC BA 0	C BA OC	

图 2.4 CANScope 报文界面

2.3 示波器界面

CANSCOPE集成 100MHZ 实时示波器, 开机后即可自动进行匹配波特率。可以对 CANH,

CANL, CAN 差分进行分别测量。获得位宽、幅值、过冲、共模电压等等常规信息。另外还能 对波形进行实时傅里叶变换 (FFT), 将不同频率的信号分离出来, 从而实现发现干扰源的目的。

图 2.5 CANScope 示波器界面

2.4 波形界面

由于实时示波器只能看即时窗口的波形,所以为了更好地发现总线上面的物理问题, CANSCOPE 自带 512M 超大波形存储,可以将波形数据存储 13000 帧作为分析数据。并且在分 析时,已经将模拟、数字、协议都按时间解析好,方便工程师对应查看故障所在。比如某个 CAN 协议出错,但这个错误是什么波形,就可以一目了然。

图 2.6 CANScope 波形界面

2.5 波形与报文联动观察界面

报文和波形我们不是割裂开的,按照测试习惯,方便查看和分析, CANSCOPE 还可以同步 建立水平选项卡,这样就可以同步查看报文与对应波形。当然我们重要的不是用来看正常的 报文,只要在筛选框中输入错误,即可筛选出错误报文,然后点击即可查看到错误帧的波形。

			400as	500us	600us	700us	800us	900us 1ms	1.1ms	1.2ms
r	CAN-H		3.866V						- <u>rh</u>	
	CAN+L	р. ^{С.} р	-22.46mV							.,
-	CAN-差分	<u>س</u> ال								٦
	CAN-逻辑值	010	1 0 1 1	0 1 0 1 0	1 0 1 0) 1 0 1	0 1 0	1 0 1 0 1	0 1 0 1 0 1 0	1
	CAN-分析	ta:68 H	Data:00 H	Data:24 H	Data:00 H Da	ita:00 H	Data:00 H Data	:00 H CRC:60CD I	ECF:Error	
		•				III				
HT C	AN 报文 ×	% ⊼ ≧ 🖸 🗹	配波特率与自动量	程 😒 自动滚屏	●清除过滤 😠 清洁	2列表 🜗				
序号		时间	状态	传输方向	較类型	数据长度	帧ID	較数据	事件标记	注释
在此	处输入 💡	在此处输入文字	7 在此处输入	7 在此处输入	☞ 在此处输入	7 在此处输入…	▼ 在此处输入 5	7 在此处输入文字 💡	在此处输入文字 💡	在此处输入.
W	57,183	00:48:49.769 15	成功	接收 (本地)	标准数据帧	8	197 H	EC 68 00 24 00 00 0	_	
W	57,184	00:48:49.770 37	成功	接收 (本地)	标准数据帧	8	198 H	EC 68 00 24 00 00 0		
11	57,185	00:48:49.771 57	成功	接收 (本地)	标准数据帧	8	199 H	EC 68 00 24 00 00 0		
w	57,186	00:48:49.772 76	成功	接收 (本地)	标准数据帧	8	19A H	EC 68 00 24 00 00 0		
	57,187	00:48:49.774 04	帧结束格式	接收 (本地)						
w	57,188	00:48:49.775 24	成功	接收 (本地)	标准数据帧	8	19C H	EC 68 00 24 00 00 0		
W	57,189	00:48:49.776 44	成功	接收 (本地)	标准数据帧	8	19B H	EC 68 00 24 00 00 0		
					the second se					

图 2.7 波形联动报文查看错误帧

2.6 CANStressZ 模拟信号测试扩展板

CANStressZ 是配套 CANScope-Pro 专业版 CAN 总线分析仪的扩展板。

图 2.8 CANStressZ 扩展板

CANStressZ 内部集成了 CAN 总线压力测试模块和网络线缆分析模块。

※**压力测试模块**包括模拟干扰(数字干扰在 CANScope 已标配), CAN-bus 应用终端的工 作状态模拟、错误模拟能力。可以在物理层上进行 CAN 总线短路、总线长度模拟、总线负载以 及终端电阻匹配等多种测试,可以完整地评估出一个系统在信号干扰或失效的情况下是否仍能 稳定可靠地工作。

※网络线缆分析模块具有无源二端网络的阻抗测量分析的能力。可以测试导线在不同频率 下的匹配电阻、寄生电容、电感。标定导线在何种波特率下具备较佳的通讯效果。

两个模块联合使用可以帮助用户快速而准确地发现并定位错误,完成对节点的性能评估与 验证,大大缩短开发周期,方便实现网络系统稳定性、可靠性、抗干扰测试和验证等复杂工作, 是 CAN-bus 网络测试工程师的好帮手。如图 2.9 所示。为和 CANScope-Pro 设备连接后的测量 连接图。

图 2.9 加上扩展板后的测量组合

3. 测试内容概述

测试内容包括对 CAN 通信接口的 ISO11989-1(数据链路层)和 ISO11898-2(物理层)、 GMW3122(物理层)一致性测试、CAN 应用层以及 CAN 应用层 CIA301 的一致性测试。

1. 物理层一致性测试(ISO11898-2、GMW3122)

- 输出电压测试;
- 终端电阻变化时的输入电压阈值测试;
- 内阻测试
- 输入电容测试与最大电容压力测试;
- 最大最小设备供电电压;
- 信号边沿测试;
- 信号特征测试;
- 位时间测试;
- 波特率容忍度测试;
- 容错性能测试;
- 内部延时测试与网络延迟评估;

2. 数据链路层一致性测试(ISO11898-1)

- 采样点测试;
- CAN2.0B 兼容测试;
- 报文的 DLC 测试;
- 报文标示符测试;
- 报文发送方式测试;
- 总线负载压力测试;

3. CAN 应用层一致性测试

- 报文的发送周期测试;
- BusOff 处理测试;

4. 试验准备

4.1 试验前填写表格

在试验前,需填写如下表格。

产品名称		型号规格					
委托单位							
制造单位							
制造商代表							
检验类别	委托送样	样品来源	送样				
抽样日期	/	样品数量	1				
生产日期/批	/	样品编号					
样品到达日期		样品状态说明	未发现明显的外观缺陷				
抽样方案		/					
	ISO11	1898-1(CAN 总线数据链路	各层协议)				
检验依据	ISO11898-2、C	iA105、GMW3122 (CAN	N 总线物理层协议)				
	CiA301(CAN 应用层协议)						
检验项目	*	**系统 CAN 通信一致性	测试				
检验地点	检验日期						

表 4.1 一致性测试试验前表格

4.2 试验报告须知

试验报告中,须对被测设备与测试设备进行介绍,基本信息须包括:设备名称、硬件版本号、 软件版本号。试验报告须有试验目的、试验依据、试验条件、试验设备、工具、工装、物料、 试验方法、试验评定、试验程序等

被测设备: Device Under Test (缩写 DUT)

4.2.1 试验设备、工具、工装、物料

如表 4.2 所示。为本试验需要的必要试验设备、工具。

表 4.2 试验设备、工具

名称	型号	检定有效期
CAN 总线分析仪	CANScope-Pro	
模拟扩展板	CANScope-StressZ	
分析仪电源	PT95 大容量电池	
数字示波器	ZDS2024 Plus	
六位半万用表	DMM6000	
程控电源	DCP8325L	
CAN 主站卡	USBCAN-E-P	
转换头	TEZ-C03(DB9 并联测量接头	
CAN 电缆	RVSP 双绞线 0.75mm ² x2 若干	

4.2.2 试验报告结果格式

试验报告结果格式如表 4.3 所示。

表 4.3 试验报告结果格式

序号	测试项目	测试结果	备注
.1	输出电压测试	通过/不通过	测试不通过的原因
2			
3			
4			
5			
6			
7			

5. 试验程序

试验前需要确认 CANScope-Pro 供电工作正常,**DUT(被测设备)没有安装终端电阻,耦合方式采用 DC 耦合**,如图 5.1 所示。每个测试选项都要先启动 CANScope 再启动 DUT(被测设备),保证测试过程完整性。下文中的试验原理均为标准文档的截图与摘抄。

A	6	1 📓 🗃	=) (@	Ŧ								100	
	开始	高级	报	ÌŻ.	测试	共享	波形		眼窗	示波器		PORT	反	
b.	0	100	范围	1V/div	•	范围	1V/div	•	范围	1V/div	•	时基	50us	*
_	-		偏移	0 V		偏移	0 V		偏移	0 V		偏移	200 uS	
升启	停止	目初日に	耦合	DC	*	耦合	DC	>	控制	CAN-H - C	4 +			
	控制			CAN-	н		CANL			CAN-DIFF			水平系统	

图 5.1 修改 CANScope 示波器的耦合方式

5.1 物理层一致性测试

5.1.1 输出电压测试

试验目的:测量 CAN 总线在隐性状态输出电压水平和检查是否满足的 ISO11898-2 物理层规范 的要求。

试验依据: ISO11898-2, 具体如表 5.1 所示。

测试参数		测试值(V)	条件	
	最小值	典型值	最大值	
显性 V _{CAN_H} 输出电压	2.75	3.5	4.5	总线负载电阻 60Ω
显性 V _{CAN_L} 输出电压	0.5	1.5	2.25	总线负载电阻 60Ω
显性 Vdiff 输出电压	1.5	2.0	3.0	总线负载电阻 60Ω
显性 Vdiff 输出电压	1.4	1.9	3.0	(高负载)总线负载电阻 45 Ω
显性 Vcm输出电压	2.1	2.5	2.9	总线负载电阻 60Ω
隐性 V _{CAN_H} 输出电压	2.0	2.5	3.0	总线负载电阻 60Ω
隐性 V _{CAN_L} 输出电压	2.0	2.5	3.0	总线负载电阻 60Ω
隐性 Vdiff 输出电压	-0.5	0	0.05	总线负载电阻 60Ω
隐性 Vcm 输出电压	2.25	2.5	2.75	总线负载电阻 60Ω

表 5.1 ISO11898-2 输出电压标准

试验原理:

Key

1 CAN node with termination network

2 Ground

R_{test}为网络负载电阻,正常为 60 Ω,高负载时为 45 Ω。测量绝对和差分电压等级和 CANL CANH 线电压: VCAN_H, VCAN_L, 然后计算差分电压 Vatt 和共模电压 VCM。其中 Vatt 和 VCM 的计算 方法如下:

$$V_{diff} = V_{CAN_H} - V_{CAN_L}$$

$$V_{CM} = 0.5 * (V_{CAN} + V_{CAN})$$

如果测试结果符合表 5.1 所示,则通过测试。

试验接线与步骤:

如图 5.3 所示,进行测试连接。并且能通过调整 CANScope-StressZ 模拟扩展板上的 R_{HL}值, 进行模拟负载电阻的变化(正常测试时, R_{HL}=60Ω,高负载测试时, R_{HL}=45Ω),,进行 DUT 输 出差分驱动能力测试。注意:本测试需要 DUT 能主动发送 CAN 报文,方便进行测试。并且 CANScope 设置不勾选总线应答,其黑色表笔(地)要和 DUT 的 CAN 收发器共地。

图 5.3 输出电压测试连线图

为了减轻人工测试工作量和降低人工测试的误差,使用"对称性测试",进行共模电压 Vcm 的自动测试,使用 CANScope 软件测试中的"CAN 测试仪"——CANtest 进行 Vcan_H, Vcan_L, Vaff 自动测试,如图 5.4 所示;

	😂 🔒 l	d of 8	8 🗢 🛙	2 -					
	开始	高级	报文	测试	共享	波形	眼圈	示波器	PORT板
	Ma	1	CAN	£ +	<u> </u>	1_0	A		
事件标记		東以生日	CAN 图 对称性		山	空 こ 一 一 一 一 一 一 一 一 一 一 一 一 一	CAN	a af⊀V	
			-	7				2	

图 5.4 CAN 测试仪自动测试

对称性测试如图 5.5 所示,点击自动设置后,将误差电压设置为 0.25,以同时符合显性与 隐性电平时的 Vcm要求,然后可点击开始测试。

称性测试
对称性测试:分析共模信号(CANH+CANL)/2,测试CANH与CANL的对称程度。 电压范围
电压范围 0.25 V/div ▼ 电压偏移(V) 0 1.自动设置
提示:电压范围和偏移,用作共模信号的里程。
测试报告
电压中心(V) 0 误差电压(V) 0.5 2.开始测试
测试结果 3.生成报告
提示: 当共模信号在(电压中心±误差电压)的范围内,表示测试通过。

图 5.5 对称性测试共模电压

稍等片刻即可获得测试结果,点击"生成报告",如图 5.6 所示。

图 5.6 对称性测试报告

"CAN 测试仪"——CANtest 如图 5.7 所示。将 ISO11898-2 中 VCAN_H, VCAN_L, Vdff 的要求 填入电压测试中,并且只需要勾选电压测试,点击开启即可。注意:由于 CANScope 测试 Vdff 的隐性最大值无法设置到 0.05V,只能设置为 0.5V,所以这个测试选项应使用 ZDS2024 示波器 配合差分探头进行测试。

A CANTester				X
📔 新建 🜈 打开 🕌		系统设置 🗾 测试报告		
项目	结果 备注	设备要求	🗆 电压测试	
▲ □ 全部测试			□ CAN-H测试	是
_ ☑ 1. 电压测试		Std Pro	显性最大值	4.5
2. 边沿测试		Std Pro	显性最小值	2.75
_ □ 3. 总线延时测试		Std Pro	隐性最大值	3
- 🗌 4. 总线利用率测试	đ	Std Pro	隐性最小值	2
_ □ 5. 总线错误率测试	đ	Std Pro	■ CAN-L测试	是
_ □ 6. 对称性测试		StdlPro	显性最大值	2.25
□ 7. 采样点测试		StdlPro	显性最小值	0.5
□ 8. 位宽容忍度测i	त्त	StdlPro	隐性最大值	3
		StdlPro	隐性最小值	2
	力测试	StdPro	□ CAN-DIFF测试	是
□ 10. @K.(文村华/⊥ □ 11 拈干扰能力测	ਸ ਸੀ	Pro	显性最大值	3
	kHv	Pro	显性最小值	1.5
		Pro+stre	隐性最大值	0.5
□ 13. 忌援断路测试		Pro+Stre	隐性最小值	-0.5

图 5.7 电压测试

结束后可以点击测试报告,获得如图 5.8 所示的测试结果。

₩ 测试统计

项目	结果
电压测试	通过

🗄 电压测试

	电	压测试	
测试项	限定值	实测值	结果
CAN-H显性	2.75 V~4.5 V	3.38281 V~3.61719 V	通过
CAN-L显性	0.5 V~2.25 V	0.875 V~1.16406 V	通过
CAN-DIFF显性	1.5 V~3 V	2.24219 V~2.72656 V	通过
CAN-H隐性	2 V~3 V	2.28125 V~2.34375 V	通过
CAN-U急性	2 V~3 V	2.17188 V~2.29688 V	通过
CAN-DIFF隐性	-0.5 V~0.5 V	-0.015625 V~0.148438 V	通过

图 5.8 电压测试报告

试验评定: 依据 ISO11898-2 的输出电压规范进行评定,如果有不通过的选项,使用 ZDS2024 示波器进行再一次的精确测试,以防止误判。

5.1.2 终端电阻变化时的输入阈值压力测试

试验目的:测试被测设备 DUT 的输入阈值。测试的目标是为了在 ISO11898-2 中标示的输入电 压阈值范围内均可以通讯。

试验依据: ISO11898-2, 具体如表 5.2 所示。

表	5.2	ISO11	898-2	输ン	、电)	玉阈	值标〉	隹

测试参数	测试值(V)			条件
	最小值	典型值	最大值	
显性 Vdiff 输入电压	0.9	2.0	5.0	总线负载电阻 60Ω, 共模电压
				(min=-2V,max=7V)
隐性 Vdiff 输入电压	-1	0	0.5	总线负载电阻 60Ω, 共模电压
				(min=-2V,max=7V)

试验原理:

2 Ground

图 5.9 输入电压阈值测试原理

Rtest 为网络负载电阻,为 60Ω 。

Key

调节 U, 使 V 分别为-2V 和 6.5V 时, 再调节 I, 使在 V_{diff}=0.5V, 观察 DUT 是否都能正常 通讯,如果正常通讯,则通过隐性 Vat 输入电压测试

然后调节 U, 使 V 分别为-2V 和 6.1V 时, 再调节 I, 使在 V_{diff}=0.9V, 观察 DUT 是否能停止 通讯,如果能停止通讯,则通过显性 Voitf 输入电压测试。

试验接线与步骤:

如图 5.11 所示,进行测试连接。调整 CANScope-StressZ 模拟扩展板上的 R_{HL} 值为 60 Ω , R_H和 R_I为0Ω。配置干扰源为外部,如图 5.10 所示,便于启用 Vdis+和 Vdis-的外部输入接口。 注意:本测试需要 DUT 能主动发送 CAN 报文,方便进行测试。并且 CANScope 不勾选总线应 答,其黑色表笔(地)要和 DUT 的 CAN 收发器共地

图 5.10 调整 CANScope-StessZ 干扰源为外部

图 5.11 输入电压阈值测试连线图

调节 DCP8325L 的 U, 使 V 分别为-2V 和 6.5V 时,再调节 DCP8325L 的 I, 从 CANScope 的示波器上观察到 V_{diff}=0.5V 时,观察 DUT 是否能正常发出报文,如果正常通讯,则隐性 V_{diff} 输入电压测试通过。

然后调节U,使V分别为-2V和6.1V时,再调节I,从CANScope的示波器上观察到V_{diff}=0.9V, 观察 DUT 是否能停止通讯,如果能停止通讯,则显性 V_{diff}输入电压测试通过。

试验评定:依据 ISO11898-2 的输入阈值电压规范进行评定。

5.1.3 内阻测试

试验目的:测试 DUT 的 CANH 对地、CANL 对地、CANH 对 CANL 的内阻是否符合 ISO11898-2 的规范。

试验依据: ISO11898-2, 具体如表 5.3 所示。

测试参数	测试值			条件
	最小值	典型值	最大值	
CANH 对地电阻	5K Ω	-	50K Ω	无负载电阻
CANL 对地电阻	5K Ω	-	50K Ω	无负载电阻
CANH 对 CANL 电阻	10K Ω	-	100K Ω	无负载电阻

表 5.3 ISO11898-2 内阻标准

试验原理:

Key

1 CAN node with termination network

2 Ground

1 CAN node with termination network

2 Ground

图 5.13 CANH 对 CANL 的差分内阻测试原理

Rtest 为测试电阻,为 5K Ω 。

CANH 对地、CANL 对地内阻测试时,U=-2V 和 7V 各测试一次。以如下公式计算后,取 平均值(VCAN_H和 VCAN_L为开路 CANH 和 CANL 对地电压):

 $\textbf{R}_{\text{in_H}=\textbf{R}_{\text{test}}} \times ~(~\textbf{V}_{\text{CAN_H}}-\textbf{V}) ~\textit{/} ~(~\textbf{V}-\textbf{U})$

$$R_{in_L}=R_{test} \times (V_{CAN_L}-V) / (V-U)$$

CANH 对 CANL 的差分内阻测试时,U=5V。以如下公式计算(Vdiff 为开路差分电压):

 $R_{diff} = R_{test} \times (V_{diff} - V) / (V - U)$

试验接线与步骤:

如图 5.11 所示,进行测试连接。注意:本测试需要 DUT 上电后,不能发送 CAN 报文, 方便进行测试。

CANH 对地、CANL 对地内阻测试时,先 CANH 和 CANL 开路,测试对地电压 VCAN_H和 VCAN_L。然后将 U 调节为-2V 和 7V 分别各接入测试一次。以如下公式计算后,取平均值:

Rin_H=R_{test}×(VCAN_H – V)/(V– U) Rin_L=R_{test}×(VCAN_L – V)/(V– U) 如果 Rin_H 和 Rin_L 均符合 5K Ω~50K Ω 电阻范围,则通过测试。 CANH 对 CANL 的差分内阻测试时,先 CANH 和 CANL 开路,测试差分电压 Vdiff。然后将 U 调节为 5V 接入测试。以如下公式计算:

$$\mathsf{R}_{\mathsf{diff}} = \mathsf{R}_{\mathsf{test}} \times (\mathsf{V}_{\mathsf{diff}} - \mathsf{V}) / (\mathsf{V} - \mathsf{U})$$

如果 Rdff 均符合 10KΩ~100KΩ电阻范围,则通过测试。

试验评定:依据 ISO11898-2 的内阻标准进行评定。

5.1.4 输入电容测试与最大电容压力测试

试验目的:测试DUT的CANH对地、CANL对地、CANH对CANL的输入电容是否符合GMW3122的CAN规范。

试验依据: GMW3122, 具体如表 5.4 所示。

测试参数	测试值			条件
	最小值	典型值	最大值	
CANH 对地电容	40pF	-	150pF	负载电阻大于 5KΩ
CANL 对地电容	40pF	-	150pF	负载电阻大于 5KΩ
CANH 对 CANL 电容	0pF	-	90pF	负载电阻大于 5KΩ

表 5.4 GMW3122 输入电容标准

试验原理:

图 5.15 负载电容放电时间定义

τ=0.721·(t2-t1)

图 5.16 Cbusin 和 Cin 测试原理(ECU 输出线从上往下为 CANH、CANL、GND)

 $\begin{array}{c} C_{\text{busin1}=\tau/R_i}\\ C_{\text{in}=\tau/2R_i} \end{array}$

图 5.17 Cdiff测试原理(CANnode 输出线从上往下为 CANH、CANL、GND)

Cdiff= Cbusin2 - Cin

试验接线与步骤:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板, **需要 DUT** 不上电, 断开终端电阻, 方便进行测试。并且 CANScope 不勾选总线应答,其黑色表笔(地) 要和 DUT 的 CAN 收发器共地。

使用 CANScope 测试时,其发送测试波形为正弦波,测试精度要比方波要高。不会受到收发器内阻与线缆的影响。所以无需使用负载电阻。

测试 Cdiff

如图 5.18 所示,进行测试连接, 注意,要断开 R_{IL}终端电阻。

图 5.18 输入电容测试

打开 CANStress 配置,将干扰源确定为内部.如图 5.19 所示。

模拟干扰	配置	阻抗测量	阻抗绝对值	阻抗相	位
	示测	皮器监听端	CAN IN	•	🗹 使能收发器
	С	AN 总线类	高速	-	🔲 使能阻抗测量
	容错	CANERRI	500	_	
$\boldsymbol{<}$		干扰源:	内部	•	外部为Vdis+与Vdis-

图 5.19 调整干扰源

如图 5.20 所示,点击阻抗测量中的开始,测试出的 C_p 就是 C_{aff} .

CANStress	
文件 视图 模拟干扰 关闭	
阻抗绝对值 配置 阻抗测量 阻抗绝对值 阻抗相位	
扫描参数	
开始频率(Hz) 4000.000 全 开始扫描 RpIICp ▼ 开加	â
0	
	-
	_
结束频率(Hz) 4000.000 → 800 448.227 Ohm	
Cp 698.137 pF 单点扫描次数 1 🚖	
阻抗测量结束	数字

图 5.20 阻抗测量测试出 Cbusin2

如果 Cdiff 在 0~90pF,则 Cin测试通过。

试验评定:依据 GMW3122 的内阻标准进行评定。

5.1.5 最大最小供电电压测试

试验目的:测试被测设备 DUT 的供电电压,确定支持 CAN 总线通讯的可正常工作的最小供电电压 Vs_min、恢复通讯电压 Vresume、可正常工作的最大供电电压 Vs_max。

试验依据:根据被测 DUT 标称的最大与最小供电电压。

试验原理:

设置 DUT 的电源电压为正常工作电压 。以每 1 分钟下降 0.1 V 电压的速度, 直至 CAN 总 线通讯完全中断,将此电压减 0.1V,即为"可正常工作的最小供电电压 Vs_min"。

然后增加电压,以每1分钟上升0.1V的速度,测试到通信恢复的电压。记录为"恢复通讯电压 Vresume"。

然后继续以每1分钟上升0.1V的速度增加电压,在达到标称最大供电电压前,如果通讯中断,则记录此时电压为"可正常工作的最大供电电压 Vs_max"。若达到标称最大供电电压后,仍可通讯,则将标称最大供电电压记录为"可正常工作的最大供电电压 Vs_max"。

试验接线:

本测试使用 CANScope-Pro 与 DCP8325L 程控电源测试, **需要 DUT 上电后,能一直发送** CAN 报文,方便进行测试。如图 5.21 所示,进行测试连接。

图 5.21 最大最小供电电压测试

试验步骤: 同测试原理,调节程控电源的供电电压,通过 CANScope 的界面进行报文和数据观察。注意能正常通讯的标准为: 电压稳定后,1分钟内没有错误帧出现。

试验评定:依据被测 DUT 的标称最大最小供电电压进行评定。若可正常工作的最小供电电压 Vs_min≤DUT 标称最小供电电压;恢复通讯电压 Vresume≤DUT 标称最小供电电压;可正常工 作的最大供电电压 Vs_max= DUT 标称最大供电电压。则判定合格。

5.1.6 信号边沿测试

试验目的:测试被测设备 DUT 的差分电平在隐性电平到显性电平、显性电平到隐性电平变化的时间。

试验依据: GMW3122, 具体如表 5.5 所示。表中条件如图 5.22 所示。

测试参数 隐性->显性边沿 显性->隐性边沿 条件 最小值 典型值 最小值 最大值 高速 CAN (最小负载) 典型值 500Kbps, C1=100pF、 15ns 150ns 15ns 300ns C1=100pF、C3=0pF 500K~1Mbps 高速 CAN (最大负载) 典型值 500Kbps, C1=4700pF、 15ns 1300ns 15ns 1300ns C1=4700pF、C3=3300pF 500K~1Mbps 中速 CAN (最小负载) 15ns 600ns 15ns 1200ns 典型值 125Kbps, C1=100pF、 100K~250Kbps C1=100pF、C3=0pF 中速 CAN (最大负载) 典型值 125Kbps, C1=10000pF、 15ns 2650ns 15ns 2650ns C1=10000pF、C3=6800pF 100K~250Kbps

表 5.5 GMW3122 信号边沿标准

试验原理:

图 5.22 GMW3122 边沿测试图

如表 5.5 所示的四种条件下,选择被测 DUT 的适应条件,测试接线小于 1 米,测试被测 DUT 的信号差分电平 V_{diff}=V_{CANH}-V_{CANL}的上升时间和下降时间(电压 20%~80%的区间)。上升 时间:从隐性到显性状态过渡时间。下降时间:从显性向隐性状态过渡时间。进行测量时,每 个边沿至少测量 1000 次,以确定边缘上升/下降时间的最小值和最大值。接线如图 5.23 所示。

图 5.23 信号边沿接线图

试验接线:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板,需要 DUT 上电后,一直能发送 CAN 报文,方便进行测试。并且 CANScope 不勾选总线应答,其黑色表笔(地)要和 DUT 的 CAN 收发器共地。如图 5.24 所示,进行测试连接。

图 5.24 边沿测试接线图

配置干扰源为外部,如图 5.25 所示,便于启用 Vdis+和 Vdis-的外部输入接口。注意 GND

是在 Vdis+和 Vdis-外部输入口中间那个接口,用于和 CAN 收发器的地连接。

模拟干扰	配置	阻抗测量	阻抗绝对值	阻抗相位	
	_	t DD (therefore)	[
	不過	支 器监听端	CAN IN	•	☑ 使能收发器
	С	AN 总线类	高速	-	🔲 使能阻抗测量
	容错	CAN电阻:	500	•	
		干扰源:	外部	• 外部	鄂为Vdis+与Vdis-

图 5.25 调整 CANScope-StessZ 干扰源为外部

试验步骤:

按表 5.5 所示,选择对应的测试条件进行测试。

将 Vdis+和 GND、Vdis-和 GND 间各接入表 5.5 所要求的 C1、C2 电容,调整 CANScope-StressZ 的控制面板将 CHL 调节为表 5.5 所要求的 C3 电容。然后启动 CANScope-StressZ。

将 DUT 启动,发送报文,通过 CANScope 记录一段时间报文和波形后,点击 CANScope 的停止,点击工具栏中的边沿统计。如图 5.26 所示

图 5.26 边沿统计图标

点击边沿统计,获得结果,如图 5.27 所示。

力沿统计						
边沿区间	20%~80%	- (排序	上升时ій▼	升序]
帧ID	上升时间	上升斜率	下降时间	下降斜率	带宽	
706 H	31.1ns	37.9 V/us	20ns	52.4 V/us	11.25M	Ч
706 H	31.1ns	37.9 V/us	20ns	52.5 V/us	11.25M	
706 H	31.1ns	37.9 V/us	20ns	52.5 V/us	11.25M	
706 H	31.1ns	37.8 V/us	20ns	52.4 V/us	11.25M	
706 H	31.1ns	38 V/us	20ns	52.5 V/us	11.25M	
333 H	32.5ns	36.1 V/us	20ns	52.6 V/us	10.7692M	
333 H	33.3ns	35 V/us	20ns	52.5 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.4 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.4 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.4 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.4 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.5 V/us	10.5M	
706 H	33.3ns	35 V/us	20ns	52.5 V/us	10.5M	-
				开始统计		

图 5.27 边沿统计(升序排列)

点击排序为上升时间,升序排列中,第一条为上升时间最小值,如图 5.27 所示,为 31.1ns;

降序排列中,第一条为上升时间最大值,如图 5.28 所示。

边沿统计						×
边沿区间	20%~80%	- (排序	上升时间▼	降序 🗸)
帧ID	上升时间	上升斜率	下降时间	下降斜率	带宽	
60E H	502ns	2.47 V/us	40ns	29.9 V/us	696.902K	
60E H	499ns	2.47 V/us	36.7ns	34.9 V/us	701.559K	
60E H	492ns	2.51 V/us	35.6ns	36.6 V/us	711.06K	
60E H	492ns	2.51 V/us	36.7ns	34.9 V/us	711.06K	
60E H	492ns	2.5 V/us	32.2ns	41.5 V/us	711.06K	
60E H	491ns	2.53 V/us	36.7ns	34.8 V/us	712.669K	
60E H	491ns	2.54 V/us	40ns	29.9 V/us	712.669K	
60E H	489ns	2.52 V/us	37.8ns	33.2 V/us	715.909K	
60E H	489ns	2.5 V/us	38.9ns	31.6 V/us	715.909K	
60E H	488ns	2.55 V/us	40ns	29.9 V/us	717.539K	
60E H	488ns	2.59 V/us	34.4ns	38.2 V/us	717.539K	
60E H	487ns	2.54 V/us	32.2ns	41.6 V/us	719.178K	
60E H	487ns	2.55 V/us	27.8ns	48.2 V/us	719.178K	-
				开始统计	- 导出	

图 5.28 边沿统计(降序排列)

同理,可以分析出下降时间的最小值,和最大值。 试验评定:依据 GMW3122 的信号边沿标准进行评定。

5.1.7 信号特征测试

试验目的:测试被测设备 DUT 的差分电平位信号的特征。 **试验依据:** GMW3122,具体如表 5.6 所示。

表 5.6 GMW3122 信号特征标准

测试参数	F	上例	条件
	最小值	典型值	
1bit 长度的前半段,输出电平的幅值÷电平末端幅值	81%	150%	测试线缆<1m
1bit 长度的后半段,输出电平的幅值÷电平末端幅值	95%	105%	测试线缆<1m
CANH+CANL	4.2V	5.8V	测试线缆<1m

试验原理:

通过示波器测量 1bit 的差分电平显性位的末端幅值, 然后在测量前半段(50%) 差分电平 最大值, 两者相除, 如果在 81%~150%则通过;

然后在测量后半段(50%)差分电平最大值,除以分电平显性位的末端幅值,如果在95%~105%则通过;

CANH+CANL 通过两个电平的相加运算所得,如果在 4.2V 到 5.8V 则通过。

试验接线:

本测试使用 CANScope-Pro 的眼图功能,进行统计以达到高的测试精度。需要 DUT 上电后, 一直能发送 CAN 报文,方便进行测试。并且 CANScope 不勾选总线应答,其黑色表笔(地) 要和 DUT 的 CAN 收发器共地。如图 5.29 所示,进行测试连接。

图 5.29 信号特征测试连接图

试验步骤:

步骤1:打开 CANScope,在 DUT 正常发送报文后,启动 CAN 眼图功能,如图 5.30 所示。

图 5.30 眼图功能

通过光标,先测量出眼图信号末端的幅值,如图 5.30 所示,为 2.15V。然后再测量 bit 前 半段的最大幅值,如图 5.31 所示为 2.73V。则 2.73/2.15=127%,符合 GMW3122。

图 5.31 前半段最大幅值

然后再测量 bit 后半段的最大幅值,如图 5.32 所示,为 2.25V。则 2.25÷2.15=104%,符合 GMW3122 信号特征标准。

图 5.32 后半段最大幅值

步骤 2:

为了测试 CANH+CANL 的电压值,需要使用对称性测试功能。由于 GMW3122 规定 CANH+CANL 的电压要在 4.2V~5.8V,而正常为 5V。所以在采用对称性测试时,其中使用的是 (CANH+CANL)/2 进行判别。所以标准范围为 2.1V~2.9V,正常为 2.5V。因此图 5.33 中误差 电压需要填入 0.4。(1.自动设置需要先点击,然后才能 2.开始测试)

内称性测试 对称性测试:	分析共模信号 <mark>(</mark> CA	NH+CANL)/2,犭	则式CANH与CANL的	
电压范围 电压范围 提示:电压范	0.25 V/div 🔹	电压偏移(V) +模信号的里程	•	1.自动设置
测试报告 电压中心(V)	•	误差电压(V)	0.4	2.开始测试
测试结果 提示:当共模	1信号在(电压中心	〕±误差电压)的	的范围内,表示测试	3.生成报告 式通过。

图 5.33 对称性测试 CANH+CANL

如果测试结果通过,则 CANH+CANL 的电压是符合 4.2V~5.8V 的。 试验评定:依据 GMW3122 的信号特征标准进行评定。

5.1.8 位时间测试

试验目的:测试被测设备 DUT 输出的差分电平位信号的特征。 **试验依据:** GMW3122,具体如表 5.7 所示。表中条件如图 5.22 所示。

测试参数	位时间偏差		条件
	最小值	最大值	
高速 CAN(最小负载)	-0.45%	+0.45%	典型值 500Kbps,C1=100pF、
500K~1Mbps			C1=100pF、C3=0pF
高速 CAN (最大负载)	-0.45%	+0.45%	典型值 500Kbps,C1=4700pF、
500K~1Mbps			C1=4700pF、C3=3300pF
中速 CAN (最小负载)	-0.5%	+0.5%	典型值 125Kbps,C1=100pF、
100K~250Kbps			C1=100pF、C3=0pF
中速 CAN (最大负载)	-0.5%	+0.5%	典型值 125Kbps, C1=10000pF、
100K~250Kbps			C1=10000pF、C3=6800pF

表 5.7 GMW3122 信号位时间标准

试验原理:

如表 5.5 所示的四种条件下,选择被测 DUT 的适应条件,使用示波器,通过测试 DUT 连续 20-30 个位的隐性-显性差分电平的边沿时间,平均计算出一个位的时间,至少要重复 100 次,确定最大和最小值。如图 5.34 所示。

图 5.34 位时间测量

试验接线:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板,并且为了保证准确性,采用比较 先进的**眼图统计**方法,避免人工统计的误差与节约人工成本,**需要 DUT 上电后,一直能发送** CAN 报文,方便进行测试。并且 CANScope 不勾选总线应答,其黑色表笔(地)要和 DUT 的 CAN 收发器共地。如图 5.24 所示,进行测试连接。

配置干扰源为外部,如图 5.36 所示,便于启用 Vdis+和 Vdis-的外部输入接口。注意 GND 是在 Vdis+和 Vdis-外部输入口中间那个接口,用于和 CAN 收发器的地连接。

模拟干扰	配置	阻抗测量	阻抗绝对值	阻抗相位	
	示测	皮器监听端	CAN IN	•	📝 使能收发器
	С	AN 总线类	高速	•	🔲 使能阻抗测量
	容错	CAN电阻:	500	•	
	<	干扰源:	外部	外部	为Vdis+与Vdis-

图 5.36 调整 CANScope-StessZ 干扰源为外部

试验步骤:

按表 5.7 所示,选择对应的测试条件进行测试。

将 Vdis+和 GND、Vdis-和 GND 间各接入表 5.5 所要求的 C1、C2 电容,调整 CANScope-StressZ 的控制面板将 CHL 调节为表 5.7 所要求的 C3 电容。然后启动 CANScope-StressZ。

将 DUT 启动,发送报文,通过 CANScope 记录一段时间报文和波形后,点击 CANScope 的停止,保存。然后点击测试中的**软件眼图**。如图 5.37 所示

图 5.37 软件眼图功能

在**软件眼图**界面中,先点击**第一步:添加配置**。点击**自动调节**,并且勾选**过滤 ACK 区域** 对应波形。点击确定即可。如图 5.38 所示。

Eye Info	软件眼图设置
软件眼图	模板设置
参数设置 眼图预览	眼图名称: EyeInfo
眼图 EveInfo	· 模板选择: 清除 设置
	眼图通道: CAN-DIF ▼ 范围: 0.5V/div ▼ 偏移(V): 4.39 自动调节
	选择眼图通道,点击"自动调节",可使生成的眼图位于窗口中心附近。
	中航过速条件
	帧序号: 0 至 0 □ 启用
	•••类型:
	事件标记: <任意> ▼
	帧D范围: 00000080; 设置
	••••••••••••••••••••••••••••••••••••
	◎ 保留
	波形过滤
第一步: 添加函署	☑ 过速ACK区域对应使形
	uilite and a second sec

图 5.38 软件眼图添加配置

然后点击第二步:生成眼图,等待完成后点击第三步:查看眼图。如图 5.39 所示。

软件眼图		tion the local		**
参数设置 眼图预览				7
眼囹	统计结果	过濾条件	模版参数	
EyeInfo	碰撞次数(0)	00000080;NO ACK;	CAN-DIFF;range(0.5V/di	修改配置
				「一時間」」
				清空配置
				导入配置
				長出配置 しんしょう しょうしょう しょう
		\sim		1
第一步:添加配置	> 第二步:	生成眼图 第三步	ち: 查看眼图 生成报告]

图 5.39 生成眼图和查看眼图

在 CAN 眼图的选项卡中可查看到生成的眼图,如图 5.40 所示。点击显示中的时间测量、 电压测量和眼图轮廓。将电压测量线卡住 0.9V 左右的,然后在与波形上升沿的交叉点,卡上时 间测量线。注意左时间测量要卡在最左边的上升沿亮线,右时间测量要卡在最右边的上升升沿 亮线。读出的就是此 DUT 发出的位时间值。

共享 波形	眼图 示波器 PORT	T板				
*	正 显示模板 命中统计 命中续板 調图模板	 ✓ 时间测量 ✓ 电压测量 □ 氯标测量 采样点 显示 		全塀 ・ ・ ・		
CAN眼图 ×	E CAN示波器					
	Eye Info count :10.8K 400ns/div 0.5V/div	Voltage one : 1.81V zero : -0.625mV ampl : 1.8125V hght : 1.70313V	Quality Qfact :17 SNR :56 dB ER :42 dB	Time Meas X1 :0% X2 :10 X2-X1 :2.0	sure Volt M V1 0% Y2 00391us Y2-Y1	easure :890mV :-16.3mV :1.70313V
-10%	10%	30%	50%	70%	90%	110%
0%			2.00391us			• 100%
	\square	890mV				
		0.90625V			\mathbb{Z}	
		-16.3mV				

图 5.40 眼图测量位时间

试验评定:依据 GMW3122 的信号位时间标准进行评定。

5.1.9 波特率容忍度测试

试验目的:测试被测设备 DUT 接收时,对于波特率变化的容忍度,。 **试验依据:** GMW3122,在表 5.8 所示的条件下进行测试波特率的容忍度。不应出现错误帧。

测试会数	复件
洲 瓜参奴	
高速 CAN(最小负载)	典型值 500Kbps, C1=100pF、
500K~1Mbps	C1=100pF、C3=0pF
高速 CAN (最大负载)	典型值 500Kbps,C1=680pF、
500K~1Mbps	C1=680pF、C3=330pF
中速 CAN (最小负载)	典型值 125Kbps,C1=100pF、
100K~250Kbps	C1=100pF、C3=0pF
中速 CAN (最大负载)	典型值 125Kbps, C1=4700pF、
100K~250Kbps	C1=4700pF、C3=2200pF

表 5.8 GMW3122 位宽度容忍测试条件标准

试验原理:

在表 5.8 所示的四种条件下,选择被测 DUT 的适应条件。使用如表 5.9 所示的报文对 DUT 进行发送,不出现错误帧则表示通过。

表 5.9 测试报文

ID	Data						
\$555	55 55 55 55 55 55 55 55						
\$000	00 00 00 00 00 00 00						
\$7FF	FF FF FF FF FF FF FF						
\$0F0	F0 F0 F0 F0 F0 F0 F0						

试验接线:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板,需要 DUT 上电后,不发送 CAN 报文,但可以正常应答报文,方便进行测试。并且 CANScope 不勾选总线应答,其黑色表笔(地) 要和 DUT 的 CAN 收发器共地。如图 5.41 所示,进行测试连接。

图 5.41 波特率容忍度接线图

配置干扰源为外部,如图 5.42 所示,便于启用 Vdis+和 Vdis-的外部输入接口。注意 GND 是在 Vdis+和 Vdis-外部输入口中间那个接口,用于和 CAN 收发器的地连接。

模拟干扰	配置	阻抗测量	阻抗绝对值	阻抗相位	
	示测	皮器监听端	CAN IN	•	📝 使能收发器
	С	AN 总线类	高速	•	🔲 使能阻抗测量
	容错	CAN电阻:	500	•	
	<	干扰源:	外部	外部	为Vdis+与Vdis-

图 5.42 调整 CANScope-StessZ 干扰源为外部

试验步骤:

按表 5.8 所示,选择对应的测试条件进行测试。

将 Vdis+和 GND、Vdis-和 GND 间各接入表 5.8 表 5.5 所要求的 C1、C2 电容,调整 CANScope-StressZ 的控制面板将 CHL 调节为表 5.8 所要求的 C3 电容。然后启动 CANScope-StressZ。

将 DUT 启动,通过 CANScope 的**重播功能**添加 如表 5.9 所示的报文,发送间隔为 100ms, 发送次数为 1000 次,然后点击发送。如图 5.43 所示。

美型	标准数据帧 ▼	数据	00 0	0 00 00 00 00 00 00		发送间隔	1 ms			
帧ID	000	重复发	丁丁丁	1		递增选择	帧ID和数据這▼			
DLC	8	发送次	(数)	无限	•			友话	皇倍	
				发送帧						

重播/帕	妸表					≁ û □ ×
- 🕞 😕	送 🕨 播放	女 🔓 导入 📓 导出	🛂 添加 🏄 删除	🌃 全选 📢 反选 🛛 发送次数 1000		
序号		帧类型	数据长度	帧ID	帧数据	时间间隔(ms)
I	1	标准数据帧	8	555 H	55 55 55 55 55 55 55 55 H	100
	2	标准数据帧	8	000 H	00 00 00 00 00 00 00 H	100
	3	标准数据帧	8	7FF H	FF FF FF FF FF FF FF H	100
-> ▼	4	标准数据帧	8	OFO H	FO FO FO FO FO FO FO H	100

图 5.43 发送固定四帧

发送完毕后,点击帧统计。如图 5.44 所示。如果成功率为 100%,则通过测试。

	 ○ 較比较 ① 流量分析 ✓ 总线利用率 	 総計算法 総計算法 総計算法 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	 送 传输延时 FFT 共模干扰 EDGE 边沿统计 	5 111
	L	具		
帧统计	-			×
序号 开始 → 到 结束	▼ 😂 刷新 🗌	👌 导出 🛛 🔄 上一个	🔁 下一个	
项目	次数 百分	(北) 注释		*
⊿ 方向	456,154 100	.00		
— 接收	456,154 100	.00		E
し发送	0 0.00)		
▲ 帧类型	456,154 100	.00		
- 标准数据帧	456,154 100	.00		
▶ 数据长度	456,154 100	.00		
▲ 状态	456,154 100	.00		
ct) Th	456 454 400	00		

图 5.44 帧统计成功率

然后点击测试中的位宽度容忍测试,测试 DUT 的波特率适应范围。如图 5.45 所示。

		Ŧ		
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	高级报文	測试 共享	波形 眼	图 示波器
		ň.	Ъl	*
事件标记 错误与干扰	软件眼图 对称性测试	t 采科 电测试 位于	8容忍度測试 C/	N测试仪
16 1				
			_	
位宽容忍度测试				Σ
测试当前CAN图	够容许的的最大	:位宽误差: 治学/回知/=#44	- 88	
侧风中兵七卫》	ふ友) 达叙1話・ りゅう	把京2991现143台	ī未▫	
容忍度(-4%~	4%);			
波特率(120 kb	ps ~ 130 kbps);			
1立宽(7.692us	~ 8.333us);			
御時式訪国(%4)・	II .5 *	⊼u E ≜		44.50.046
	66 FJ	211 13	TT-	18111112

图 5.45 位宽度容忍测试

试验评定:依据 GMW3122 的特定帧发送,无错误帧,则通过测试。为了保证 DUT 对其他设备的 CAN 波特率兼容性,位宽度容忍测试中容忍度建议大于等于±3%(不作为不合格依据)。

5.1.10 容错性能测试

试验目的:测试被测设备 DUT 的容错性能,。

试验依据: GMW3122,包括地线漂移、地线丢失、电源丢失、CAN 线中断、CAN 线各短接到 地、CAN 线各短接到电源、CAN 线短路等错误状态。要评估在这些状态下的工作情况,和恢 复时间。

试验原理:

1. 地线漂移

利用电源不断抬高 DUT 的 GND,测试总线通讯正常时,DUT 所允许的地线漂移。

2. 地线丢失

使 DUT 单独掉地,测试 1 分钟内 DUT 是否仍然正常工作。

3. 电源丢失

使 DUT 单独丢失电源,测试总线是否受到干扰,重接电源后 DUT 是否能恢复通讯。

4. CAN 线中断

测试在 CAN_H 断开 1 分钟,重连后 DUT 是否能恢复通讯。CAN_L 断开 1 分钟,重连后 DUT 是否能恢复通讯。CAN_H 和 CAN_L 同时断开 1 分钟,重连后 DUT 是否能恢复通讯。

5. CAN 线短接到地线

测试在 CAN_H 对地短路 1 分钟,恢复后 DUT 是否能恢复通讯。CAN_L 对地短路 1 分钟,恢复后 DUT 是否能恢复通讯。CAN_H 和 CAN_L 同时对地短路 1 分钟,恢复后 DUT 是否能恢 复通讯。

6. CAN 线短接到电源线

测试在 CAN_H 对电源短路 1 分钟,恢复后 DUT 是否能恢复通讯。CAN_L 对电源短路 1 分钟,恢复后 DUT 是否能恢复通讯。CAN_H 和 CAN_L 同时对电源短路 1 分钟,恢复后 DUT 是否能恢复通讯。

7. CAN_H与CAN_L短接

测试 CAN_H,CAN_L 短路 1 分钟,恢复后 DUT 是否能恢复通讯。

试验接线:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板,程控电源。需要 DUT 上电后, 一直发送 CAN 报文,方便进行测试。CANScope 可以勾选总线应答,其黑色表笔(地)要和 DUT 的 CAN 收发器共地。将启用示波器勾去掉,即不使能示波器,这时 CANScope 的 CAN 接口即为电气隔离的。如图 5.46 所示,进行测试连接。注意,本测试 DUT 与 CANScope-StressZ 连线要连接 CAN OUT 口。

图 5.46 容错性能测试接线图

试验步骤:

1. 地线漂移

如果 DUT 的 CAN 接口为隔离的,则需要将程控电源电压+-串联入 DUT 和 CANScope 的 GND 连接(黑色表笔);如果 DUT 的 CAN 接口为非隔离的,则需要将程控电源电压+-串联入 DUT 供电的 GND 线。

利用程控电源不断抬高电压(一分钟 0.1V),从 CANScope 软件中测试总线出现错误帧时的程控电源电压。

2. 地线丢失

使 DUT 和 CANScope 的黑色表笔(GND)断开,单独掉地,测试 1 分钟内 CANScope 软件中是否会出现错误帧。如果没有错误帧,则通过测试。

3. 电源丢失

使 DUT 单独丢失电源,从 CANScope 测试总线是否受到干扰,重接电源后 DUT 是否能恢 复通讯。如果丢失电源时,有小于等于1个错误帧,且重接电源后,DUT 能恢复通讯,则通过 测试。

4. CAN 线中断

使用 CANScope-StessZ 启动后,如图 5.47 所示操作,断开测试在 CAN_H 断开 1 分钟,重 连后 DUT 是否能恢复通讯。

图 5.47 CANH 断线测试

使用 CANScope-StessZ 启动后,如图 5.48 所示操作,断开测试在 CAN_L 断开 1 分钟,重 连后 DUT 是否能恢复通讯。

图 5.48 CANL 断线测试

使用 CANScope-StessZ 启动后,如图 5.49 所示操作,断开测试在 CANH 和 CAN_L 断开 1 分钟,重连后 DUT 是否能恢复通讯。

图 5.49 CANH 和 CANL 断线测试

如果重连 DUT 后,都能恢复通讯,则测试通过。

后面测试需要配置干扰源为外部,如图 5.50 所示,便于启用 Vdis+和 Vdis-的外部输入接口。注意 GND 是在 Vdis+和 Vdis-外部输入口中间那个接口,用于和 CAN 收发器的地连接。

模拟干扰	配置	阻抗测量	阻抗绝对值	阻抗相位	
		뉴 명임 (사이즈 녹나)			
	不沈	文都监听端	CAN IN	•	☑ 使能收友器
	С	AN 总线类	高速	•	🔲 使能阻抗测量
	容错	CAN电阻:	500	•	
	<	干扰源:	外部	• 外部	为Vdis+与Vdis-

图 5.50 调整 CANScope-StessZ 干扰源为外部

5. CAN 线短接到地线

将 CANScope-StressZ 的 GND 接口与 Vdis-连接。

使用 CANScope-StessZ 启动后,如图 5.51 所示操作,将 CAN_H 对地短路 1 分钟,恢复后 DUT 是否能恢复通讯。

图 5.51 CANH 对地短路测试

使用 CANScope-StessZ 启动后,如图 5.52 所示操作,将 CAN_L 对地短路 1 分钟,恢复后 DUT 是否能恢复通讯。

图 5.52 CANL 对地短路测试

使用 CANScope-StessZ 启动后,如图 5.53 所示操作,将 CANH 和 CAN_L 同时对地短路 1 分钟,恢复后 DUT 是否能恢复通讯。

图 5.53 CANH 和 CANL 对地短路测试

如果恢复后,都能恢复通讯,则测试通过。

6. CAN 线短接到电源线

将 CANScope-StressZ 的 Vdis+与 DUT 的电源连接。注意电压不得超过 24V。

使用 CANScope-StessZ 启动后,如图 5.54 所示操作,将 CAN_H 对电源短路 1 分钟,恢复 后 DUT 是否能恢复通讯。

图 5.54 CANH 对电源短路测试

使用 CANScope-StessZ 启动后,如图 5.55 所示操作,将 CAN_L 对电源短路 1 分钟,恢复 后 DUT 是否能恢复通讯。

图 5.55 CANL 对电源短路测试

使用 CANScope-StessZ 启动后,如图 5.56 所示操作,将 CANH 和 CAN_L 同时对电源短路 1 分钟,恢复后 DUT 是否能恢复通讯。

图 5.56 CANH 和 CANL 对电源短路测试

如果恢复后,都能恢复通讯,则测试通过。

7. CAN_H与CAN_L短接

使用 CANScope-StessZ 启动后,如图 5.57 所示操作,将 RHL 设置为 0,即等于 CANH 和 CAN_L 短路,1 分钟,恢复后 DUT 是否能恢复通讯。

图 5.57 CANH 和 CANL 短路测试

如果恢复后,能恢复通讯,则测试通过。

试验评定:依据 GMW3122 的 7 种物理错误类型,如果恢复后,都可以恢复通讯,则通过测试。

5.1.11 内部延时测试与网络延迟评估

试验目的:测试被测设备 DUT 的 CAN 收发延时时间。

试验依据: GMW3122,测量从MCU的CAN控制器出口,TXD发送显性上升沿到总线并且反馈到RXD的延时,TXD发送显性下降沿到总线并且反馈到RXD的延时。高速CAN(500K~1Mbps)这两个延时范围为30-350ns,中速CAN(100K~250Kbps)这两个延时范围为30-1000ns。

试验原理:

如图 5.58 所示**。测试出** T_{delay_fall} , T_{delay_rise}。注意,如果 DUT 有隔离, TXD 和 RXD 测试 需要在隔离电路之前,即靠近 MCU 一侧。

图 5.58 内部延时测量

试验接线:

本测试使用 CANScope-Pro 与 CANScope-StressZ 扩展板,ZDS2024 四通道示波器。需要 DUT 上电后,一直发送 CAN 报文,方便进行测试。CANScope 可以勾选总线应答。将启用示 波器勾去掉,即不使能 CANScope 示波器,这时 CANScope 的 CAN 接口即为电气隔离的。如 图 5.46 所示,进行测试连接。

图 5.59 内部延时测试接线图

试验步骤:

启动 CANScope,将 RHL 调节为 60 欧。然后启动 ZDS2024 和 DUT,开始发送报文。通过 ZDS2024 截取出一个 TXD 一个 bit 的波形,然后如图 5.58 所示进行测量。测试出 T_{delay_fall},T_{delay_rise}。

试验评定:依据 GMW3122 的内部延时标准。高速 CAN (500K~1Mbps) T_{delay_fall}, T_{delay_rise} 的延时范围分别在为 30-350ns 以内,中速 CAN(100K~250Kbps) T_{delay_fall}, T_{delay_rise} 的延时范围 分别在为 30-1000ns 以内。则通过测试。

5.2 链路层一致性测试

试验前需要确认 CANScope-Pro 供电工作正常,**DUT(被测设备)没有安装终端电阻,使** 能总线应答,如图 5.60 图 5.1 所示。每个测试选项都要先启动 CANScope 再启动 DUT(被测 设备),保证测试过程完整性。下文中的试验原理均为标准文档的截图与摘抄。

图 5.60 使能总线应答方式

5.2.1 采样点测试

试验目的:测试被测设备 DUT 的 CAN 控制器的波特率采样点位置。

试验依据: CAN规范CIA105,要求在各段波特率下,被测DUT采样点在87.5%左右。

试验原理:

波特率采样点是 CAN 节点判断位逻辑值的判断点。采用干扰的手段,将采样点位置的逻辑 电平破坏,则这个 CAN 报文将出现错误。以此就可以确定干扰的位置为采样点位置。如图 5.61 所示。使用 CANScope-Pro 的错误与干扰功能。可以调整需要翻转的位偏移时间与持续时间, 发送此错误的报文给 DUT。通过递进式移动干扰位置,查看总线出现错误帧的情况,则出现错 误帧的偏移时间(图中红色箭头)为采样点位置。

错误与干扰	错误与干扰
□ 自定义发送波特率 1Mbps ▼	□ 自定义发送波特案 1Mbps ▼
☑ 启用发送干扰	☑ 启用发送干扰
时间范围:干扰信号的持续时间与位宽的百分比	时间范围:干扰信号的持续时间与位宽的百分比
偏移时间 70 持续时间 5	偏移时间 90 持续时间 5
0% 20% 40% 60% 80% 100% 指定需要干扰哪些位(对应位为1),在这些位的'时间 范围'内干扰 0000000 设置 DLC干扰 0 设置 为48.干扰 000000000000000000000000000000000000	0% 20% 40% 60% 80% 100% 指定需要干扰哪些位(对应位为1),在这些位的'时间范围'内干扰 ● 帧ID干扰 0000000 设置 □ DLC干扰 0 设置 ● 数据干扰 00 00 00 00 00 00 00 设置
☑随机位置干扰频率	☑ 随机位置干扰频率〕

图 5.61 采样点测试原理

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,不** 发送 CAN 报文,方便进行测试。CANScope 可以勾选总线应答。如图 5.62 所示,进行测试连 接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.62 采样点测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。然后启动 DUT。

步骤 2: 点击 CANScope-Pro 的"测试"中的"采样点测试",如图 5.63 所示。点击开始测试后。

采样点测试			×
测试CAN网络中各个收发器	器的采样点位置分	布,误差为5%位宽。	
0% 20%	40% 60%	80% 100%	
		开始测试	

图 5.63 采样点测试

稍等片刻,即可出现测试结果,如图 5.64 所示,测试出来的采样点结果为 85%~95%。

图 5.64 采样点测试结果

如果这个自动的采样点测试无结果,则可能是采样点移动干扰过程中,导致被测 DUT 总线 关闭(bus off),从而无法完成测试。或者测试步骤 2 的结果范围过宽。需要使用步骤 3 来进行 精确测试——人工测试。

步骤 3: 使用人工手段进行采样点测试。在步骤 1 的基础上,打开 CANScope 软件的"错误与干扰",启用发送干扰,将偏移时间设置在 50,持续时间设置为 2,随机位置干扰频率拉到最右边。然后点击应用,在 CANScope 报文界面上点击发送。即发送带干扰位的报文。如图 5.65 所示。

A) 🖻 🗋		CANScope-运行中
	开始	高级 报文 测试 共享 波形 眼图 示波器	PORT板
		波特率 250 Kbps ▼ 自定义波特率 类型 标准数据帧	▼ 数据 CF DF 06 00 00 00 00 00 发送间隔 1 ms
	U	采样比 100:1 マ D 总线应答 帧ID 7CF	重复次数 1 送増选择 帧ID和数据说 ▼
井店	停止	采样率 20 M 侦测波特率 DLC 8	发送次数 无限 🔻
	控制	采集设置	发送帧
-	CAN报文:		
	4 14 5		
序	}	■ 自定义发送波特率 1 Mbps 🚽	□ 启用发送错误帧 帧ID填充错误[4:0] ▼
在此	。 比处输入…	☑ 启用发送干扰	□ 启用接收干扰 字
M	400,285	时间范围: 干扰信号的持续时间与位宽的百分比	时间范围:干扰信号的持续时间与位宽的百分比 00 00 (
W	400,286	偏移时间 50 持续时间 2	偏移时间 0 持续时间 10 00 00 0
1	400,287		00 00 C
100	400,288		0 00 00 (
100	400,289	0% 20% 40% 60% 80% 100%	0% 20% 40% 60% 80% 100% 10 00 00 0
100	400,290		
	400,291	指定需要干扰哪些位(对应位为1),在这些位的"时间 范围"内干扰	满足匹配条件后,在指定"干扰位置"的"时间范围"内干扰
	400,292		帧类型匹配 标准数据帧 ▼ 00000
201	400,295	□ 帧ID干扰 00000000 设置…	□帧ID匹配 00000000 设置… 00 00 (
	400,234	□ DLC干扰 0 设置…	摘码 00000000 00 00 00 00 00 00 00 00 00 00
	400,296	四 粉 据 工 批 00 00 00 00 00 00 00 00 00 00 00 00 0	□ 数据匹配 00 00 00 00 00 00 00 00 00 00 00 00 00
1	400,297		摘码 00 00 00 00 00 00 00 00 00 00 00 00 00
M	400,298	┃	
1	400,299		些配成功后,从下一位升始计算,指定要十执多少位 1000(
W	400,300		干扰位数 20 仅对隐性位G逻辑1)有效 00 00 C
1	400,301		20 00 C
1	400,302		应用 取消 00 00 (
	400 202		1000 C

图 5.65 手动进行采样点测试方法

通过观察 CAN 报文界面,如果错误帧数量少于 50%,则增加偏移时间,步长为1。直至 错误帧数量大于 30~50%,则记录此时刻的偏移时间为**采样点前边沿时间**。然后继续增加偏移时 间,步长为1.直至错误帧数量小于 30~50%,则记录此时刻的偏移时间为**采样点后边沿时间。**然 后可以停止测试。**采样点前边沿时间到采样点后边沿时间即为采样点范围**。

试验评定:依据 CIA105 标准,采样点为 87.5%,故测试结果的范围必须包含 87.5%才可以认定为通过,否则需要 DUT 调整采样点位置。

5.2.2 CAN2.0B 兼容测试

试验目的:测试被测设备 DUT 是否能兼容 CAN2.0B 的扩展帧,不会发出错误帧。

试验依据: GMW14242,要求在DUT在接收扩展帧时,不会有错误帧发出。

试验原理:测试工具发送各种格式的扩展帧(29位 ID)和8字节的数据。检查传输的扩展帧格式时,DUT的反应。如果没有错误帧则测试通过。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,可** 以发送 CAN 报文。CANScope 勾选总线应答。如图 5.66 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.66 CAN2.0B 兼容性测试连接

试验步骤:

启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率,点击开启。 然后**分别选择类型为扩展数据帧和扩展远程帧,点击"发送"**。如图 5.67 所示。

A	1	1 🗾 🖬	(# 🗆 t	. .						(reason	Rij Calinger	CANScope-离线
	开始	高级	报文	测试	共享 波形	眼睛	示波器	PORT板				
b.	0	波特率	250 Kbps	-	🗌 自定义波特率	2 类型	标准数据帧	▼ 数据 CF D	OF 06 00 00 00 00 00	发送间隔	1 ms	
-	-	采样比	100:1	+	🗌 总线应答	标准	数据帧	重复次数:	1	递增选择	帧ID和数据这*	
升启	停止	采样率	20 M		侦测波特率	が居	这程帜 微据帧	发送次数	无限 🔹			友送 重備
控	制			采集设置		扩展	远程帧		发送帧			

图 5.67 发送扩展帧

每种帧类型的发送持续1分钟,然后点击"帧统计"功能。**如果没有错误帧,则表示测试** 通过。如图 5.68 所示。

帧统计						×
序号	开始	▼ 到 结束	•	😂 刷新 🗋 导出 🛛	€上一个	不—不
项目			次数	百分比	注释	
⊳	方向		11,359	100.00		
⊳	帧类型		11,359	100.00		
⊳	数据长度		11,359	100.00		
4	状态		11,359	100.00		
L	- 成功		11,359	100.00		
⊳	帧ID		11,359	100.00		

图 5.68 CAN2.0B 兼容性帧统计

试验评定:依据 GMW14242,通过 CANScope 发送扩展帧,如果无错误帧,则测试通过。

5.2.3 报文的 DLC 测试

试验目的:测试被测 DUT 是否能给予所有发出信息带有正确的 DLC (数据长度).

试验依据: GMW14242,要求在DUT在发送所有应用报文,都具备正确的DLC。

试验原理: 由 DUT 发送所具备的所有应用数据,由测试工具记录,并且分析发出的 DLC 与预 期的 DLC 是否一致。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。**如图 5.69 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.69 报文 DLC 测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。**控制 DUT 能发出各种预期的报文,进行记录。最小记录时间为1分钟。**

步骤 2: 将保存下来的报文,分别先按 ID 筛选,如图 5.70 所示为对 183H 这个 ID 进行筛选,由于它的数据长度为 8,所以正常 DLC 为 8。

1	CAN报文 × Q 网络共享 CAN波形 面 CAN限图 (■ CAN示波器) CAN CAN LA									
G	à 🔥 %	% % 🕅 🖹 🛤	自动量程 🔁 自动滚用	🖥 🗟 清除过滤 👱	清除列表 🕠					
1	序号	时间	状态	方向	帧类型	数据长度	帧ID	帧数据	寻	
1	在此处输入…	▼ 在此处输入文字	▼ 在此处输入… ▼	存此处输入… 🥱	在此处输入 マ	在此处输入… 🍸	1B3 🌱	在此处输入文字	マ 在	
1	4,019	00:00:49.906 238	成功		标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
1	4,056	00:00:49.987 216	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
	4,065	00:00:50.006 173	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
	4,092	00:00:50.113 175	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
1	4,105	00:00:50.141 567	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
	4,146	00:00:50.231 125	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
	4,155	00:00:50.253 192	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
	4,184	00:00:50.362 545	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
1	4,193	00:00:50.381 121	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
1	4,214	00:00:50.427 273	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
	4,225	00:00:50.452 855	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		
1	4,256	00:00:50.546 848	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H		
1	4,265	00:00:50.567 318	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H		

图 5.70 ID 筛选

接下来就是对此 ID 的数据长度进行从 1-15 的筛选,从 1 一直筛选到比如输入 10,就发现有 异常的报文,如图 5.71 所示。此 DLC 为 10,而 CAN 的 DLC 最大值为 8。DLC 测试不通过。

	🗈 🔏 🛪 🛠 🙀 属 📄 自动量程 😌 自动滚屏 🛜 清除过滤 🛃 清除列表 🕔										
序号		时间	状态	方向	帧类型	数据长度	帧ID	帧数据	事件标		
在此	心输入… 🦷	7 在此处输入文字	▼ 在此处输入… 、	7 在此处输入…	▼ 在此处输入…	7 10	7 1B3	▼ 在此处输入文字	▼ 在此处		
1	2,200	00:00:07.429 158	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H			
W	2,206	00:00:07.471 899	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H			
W	2,239	00:00:07.540 944	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H			
W	2,246	00:00:07.557 999	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H			
M	2,273	00:00:40.128 551	成功	发送	标准数据帧	10	1B3 H	00 80 00 00 00 80 00 00 H			
m.	2,950	00:00:46.896 112	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H			
W	2,959	00:00:46.916 053	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H			
W	2,988	00:00:47.032 027	成功	发送	标准数据帧	8	1B3 H	01 80 00 00 00 80 00 00 H			
W	2,997	00:00:47.053 976	成功	发送	标准数据帧	8	1B3 H	00 80 00 00 00 80 00 00 H			

图 5.71 DLC 筛选

依次方法,对所有的 ID 进行筛选,如果都没有发现异常的报文,则测试通过。 试验评定:依据 GMW14242,如果没有发现 DLC 与实际报文数据不符,则通过测试。

5.2.4 报文标示符测试

试验目的:测试被测 DUT 发出的报文标识符(ID)是否符合预期。

试验依据: ISO11898-1,要求在DUT在发送所有应用报文,都具备正确的ID。

试验原理:由 DUT 发送所具备的所有应用数据,由测试工具记录,并且分析发出的报文标识符 (ID)是否都在预期的范围内。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。**如图 5.72 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.72 报文 ID 测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。**控制 DUT 能发出各种预期的报文,进行记录。最小记录时间为1分钟。**

步骤 2: 将保存下来的报文点击帧统计,观察是否有异常 ID 出现,如图 5.73 所示。在某个应用的 CAN 网络中出现一些 60FH、610H、632H 的 SDO 报文,不是我们预期的。所以这个测试不通过。

4	的间。 帧ID 数据题	 ・・ ・ホース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. #	· · · · · · · · · · · · · · · · · · ·	▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	(即本
5 5 5 5 余 元	it+	显示			IĄ	[
月	褐	开始 🔻	到结束 ▼	🖉 刷新 📓 导出	<→	
ie I	1		次数	百分比	注释	*
F	-	19E H	78	5.45	Cycle(MIN:824us, MAX:2.732668	5
ŀ	_	19F H	78	5.45	Cycle(MIN:900us, MAX:8.232260	5
ŀ	_	1A0 H	84	5.87	Cycle(MIN:760us, MAX:2.736632	5
ŀ	-	216 H	28	1.96	Cycle(MIN:520.991ms, MAX:5.04	2
ŀ	-	217 H	28	1.96	Cycle(MIN:520.9915ms, MAX:5.0	2
ŀ	-	218 H	28	1.96	Cycle(MIN:520.9915ms, MAX:5.0	2
H	_	219 H	28	1.96	Cycle(MIN:520.991ms, MAX:5.04	2
ŀ	-	21A H	28	1.96	Cycle(MIN:520.999ms, MAX:5.04	2
H	-	21B H	28	1.96	Cycle(MIN:520.999ms, MAX:5.04	2
ŀ	-	21C H	28	1.96	Cycle(MIN:520.995ms, MAX:5.04	2
ŀ	-	21D H	28	1.96	Cycle(MIN:520.9915ms, MAX:5.0	2
ŀ	_	21E H	28	1.96	Cycle(MIN:520.983ms, MAX:5.04	2
ŀ	_	21F H	28	1.96	Cycle(MIN:520.9865ms, MAX:5.0	4
ŀ	-	220 H	28	1.96	Cycle(MIN:520.987ms, MAX:5.04	2
ŀ	-	60F H	76	5.31	Cycle(MIN:1.6605ms, MAX:2.023	2
ŀ	_	610 H	76	5.31	Cycle(MIN:1.6525ms, MAX:2.024	2
Ľ	-	632 H	76	5.31	Cycle(MIN:1.652ms, MAX:2.0235	(
1						Ŧ

图 5.73 报文 ID 测试

试验评定:依据 ISO11898-1,如果没有发现 ID 与实际预期报文数据不符,则通过测试。

5.2.5 报文发送方式测试

试验目的:测试被测 DUT 的发送方式是否为正常发送(可自动重发)。

试验依据: ISO11898-1,应使用正常发送方式。CAN控制器具备正常发送和单次发送的模式, 在CAN应用中不可使用单次发送。

试验原理: 由 DUT 发送所具备的应用数据,由测试工具进行干扰,观察 DUT 的发送方式为正常发送(可以重发)还是单次发送(不重发)。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。**如图 5.74 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.74 报文发送方式测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。**控制 DUT 能发出各种预期的报文(注意连续相同的 ID 间隔不得小于 1S)。**

步骤 2: 打开 CANScope 的错误与干扰,启用接收干扰,偏移时间 0,持续时间 100。勾选 帧 ID 匹配,将要某个要进行干扰帧 ID 填入帧 ID 匹配,填入同样的数值到掩码。点击应用。如 图 5.75 所示。为只干扰 001H 这个 ID 的报文。

→ 2 2 2 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	誤图 示波器 PORT板
▶ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	CANIBISETX
错误与干扰	le l
□ 自定义发送波特率 1 Mbps	□ 启用发送错误帧 帧ID填充错误[4:0]
□ 启用发送干扰	☑ 启用接收干扰
时间范围:干扰信号的持续时间与位宽的百分比	时间范围:干扰信号的持续时间与位宽的百分比
偏移时间 0 持续时间 10	偏移时间 0 持续时间 100
0% 20% 40% 60% 80% 100%	9 <mark>000000000000000000000000000000000000</mark>
指定需要干扰哪些位(对应位为1),在这些位的"时间	满足匹配条件后,在指定"干扰位置"的"时间范围"内干扰
	帧类型匹配 标准数据帧 👻
□帧ID干扰 00000000 设置	☑ 帧ID匹配 00000001 设置…
□ DLC干扰 0 设置…	掩码 0000001
□ 数据干扰 00 00 00 00 00 00 00 00 00 00 00 00 00	□ 数据匹配 00 00 00 00 00 00 00 00 00 00 00 00 00
☑ 随机位置干扰频率	掩码 00 00 00 00 00 00 00 00
	匹配成功后,从下一位开始计算,指定要干扰多少位
	干扰位数 20 仅对隐性位(逻辑1)有效
	应用 取消

图 5.75 设置接收干扰

步骤 3: 通过 DUT 发送报文,从 CANScope 软件上看到有错误帧后,点击停止。观察错误 帧,如图 5.76 所示,通过错误帧的 CAN 波形看到,错误帧的 ID 是 001H,而且数量很多,将 时间显示设置为增量时间,观察红色错误帧之间的增量时间非常短(此波特率下正常 1 帧时间 以内),说明 DUT 被干扰之后,有进行正常的自动重发。DUT 的发送方式为正常发送。

时间显示	增量时间	-
帧ID显示	十六进制	-
数据显示	十六进制	*
	显示	

- T C	AN报文 ×	(🔇 网络	共享(顶	CAN眼图 🖉 CA	AN示波器								
	16 🎋 🔧	* 😹		自动量程 🔁 自动浇	歸 🔽 清除过滤	🗙 清	除列表 🕠						
序号		时间		状态	方向		帧类型		数据长度	帧ID	帧数据		事件标记
在此	处输入 🦻	在此处幕	俞入文字	☞ 在此处输入	▼ 在此处输入	. 7	在此处输入…	7	在此处输入 5	7 在此处输入… 🥱	在此处输入文字	7	在此处输入文字
N	17,468	00:00:05	.984 106	DLC填充错误									
1	17,469	00:00:05	.984 290	DLC填充错误	接收								
W	17,470	00:00:05	.984 474	DLC填充错误	接收								
1	17,471	00:00:05	.984 658	DLC填充错误	接收								
W	17,472	00:00:05	.984 874	DLC填充错误	接收								
W	17,473	00:00:05	.985 090	DLC填充错误	接收								
	17,474	00:00:05	.985 306	DLC填充错误	接收								
10	17,475	00:00:05	.985 522	DLC填充错误	接收								
1	17,476	00:00:05	.985 738	DLC填充错误	接收								
1	17,477	00:00:05	.985 954	DLC填充错误	接收								
10	17,478	00:00:05	.986 170	DLC填充错误	接收							_	
	AN波形 ×												
						M1	100us-	50us:	=50us(20K HZ)	<u>M2</u>			
				20us	40us	1	60us	1.5	80us	100us	120us 140us		160us
	CAN-差分。 	2V - 546.9mV- 906.3mV -								תתלת		-	
	CAN-逻辑		1	0 1	0	1 0	1 0	1 (0 1 0 1 0 1 0 1 0 ⁻	0 1 0 1 0 1 0 1 0 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		
	CAN-分析		S	Bas	icID:001 H	204	RTR IDE	R0	DLC:0 H:BitStuffEr.	CR	2:000F H:BitStuffError(2213 H)		C ACKSlot E.

图 5.76 正常发送的 DUT 被干扰后的重发

如果错误帧只有1帧,在1S内都没有错误帧,然后就是正常的,说明被测DUT是单次发送模式。如图 5.77 所示。

T CAN报	文 ×	🔇 网络共享 🕕	CAN眼图 🗲 CAN	示波器					
🖻 🔥 🕽	** **	% 📈 🖹 🛤 e	动量程 🔁 自动滚屏	🛿 🔽 清除过滤 🔒	(清除列表) 🕠				
序号		时间	状态	方向	帧类型	数据长度	帧ID	帧数据	
在此处输入	λ γ	在此处输入文字	▼ 在此处输入… 🦻	在此处输入…	▼ 在此处输入… ▼	在此处输入 🦻	• 在此处输入… ▼	在此处输入文字	7
w l	1	+4.576 881	DLC填充错误	接收					
101	2	+9.321 073	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	
100	3	+2.050 185	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	
101	4	+0.649 713	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	
101	5	+0.148 828	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	
101	6	+0.154 156	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	
100	7	+0.141 488	成功	接收	标准数据帧	8	002 H	00 01 02 03 04 05 06 07 H	

试验评定:依据 ISO11898-1,测试结果为 DUT 发送方式为正常发送,则通过测试。

5.2.6 总线负载压力测试

试验目的:测试被测 DUT 在各种总线负载下是否能正常运行。

试验依据: GMW14242,要求在DUT在所有负载条件下,能正常运行并且不会死机。

试验原理:由测试设备制造各种负载条件下的情况,测试 DUT 是否还可以将正常的应用数据发出。测试报文如表 5.10 所示。每个报文产生按 10%、30%、50%、70%、90%的负载率,观察 被测 DUT 发出的应用数据是否依然正常。

表 5.10 测试报文

ID	Data Length Code (DLC)	Priority
\$111	0	High
\$7FF	8	Low

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。**如图 5.78 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.78 总线负载测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。**控制 DUT 能发出各种预期的报文。**

步骤 2: 打开 CANScope 的报文界面和"总线负载率"界面,发送 ID 填入 111H, DLC 为 0,发送次数为无限。分别调整重复次数,使总线负载率为 10%、30%、50%、70%、90%。使 用 ID 筛选的方式,对应观察被测 DUT 的应用数据是否间隔时间是否正常。如图 5.79 所示。为 筛选出被测 DUT 发出的 181H 的 ID,通过增量时间的方式观察是否有异常。

						_		
				时间显示 增量时	间 🔻			
				帧ID显示 十六进	*制 ▼			
				数据显示 十八进	制 🎽			
				显	汞			
\sim								
		Ŧ					CANScope-运行	ī中
Ţ,	税 高級 扱文	测试 共享	波形 眼圈	三波型 PORT板				
b 6	波特率 250 Kbps	* 自定)	2波特率 学业 标准题	如据帧 ▼ 黄据 输注	、十六进制数据	发送间隔 1 m	is 👝 🦳	时间显示:
	采样比 100:1	▼ 🔽 总线	立答 gID 111	重现次数	200	递增选择 不送	19 - M 🕑	帧ID显示
井居 侵	采样率 20 M	侦测波特	≈ D (C 0	"送次数	无限	*	停止 重猶	数据显示
控制		采集设置			发送帧			
CANH	<mark>文 × 🔇</mark> 网络共享	CAN波形 🕕	CAN眼图 📕 CAN	N示波器				
	** ** ** 🔤 📄 🔳							
						1.000	1	
序号	时间	状态	方向	顿类型	数据长度	帧ID	「「「「「」」	
在此处输入	入	▼ 在此处输入.		▼ 在此处输入…	▼ 在此处输入…	7 181	7 在此处输入文字	
251	,651 +0.201 040	成功	接收	标准数据帧	8	181 H	00 01 02 03 04 05	06 07 H
252	,464 +0.201 298	成功	接收	标准数据帧	8	181 H	00 01 02 03 04 05	06 07 H
253	,372 +0.201 665	成功	接收	标准数据帧	8	181 H	00 01 02 03 04 05	06 07 H
254	,266 +0.201 560	成功	接收	标准数据帧	8	181 H	00 01 02 03 04 05	06 07 H
255	,147 +0.201 377	成功	接收	标准数据帧	8	181 H	00 01 02 03 04 05	06 07 H
256	,042 +0.201 016	成功 总线利	用率	1.000		100.0		×
256	,909 +0.201 085	成功						
257	,808 +0.200 912	成功 90	-					
258	,695 +0.201 012	成功 80	1			\sim	$-\gamma$	\sim
259	,594 +0.201 277	成功	1					
260	,480 +0.201 886	成功 70	-					
261	,382 +0.200 868	成功 60	-					
262	,260 +0.201 245	历史马力	1					
263	,086 +0.203 320	成功 50	-					
263	,993 +0.200 524	成功 40	1					
264	801 +0.201 092	52-52						
265	,705 +0.201 149	30						
266	,613 +0.202 483	成功	1					
267	,520 +0.201 610	成功 20		\sim	~~~~			
268	,422 +0.201 753	成功 10	W	$\sim \sim$	/~~~·			
269	,314 +0.201 013	成功	1					
270	,223 +0.200 916	成功	0 10	20 30	40 50	60	70 80 90	100
271	,105 +0.201 001	成功						
272	,004 +0.201 774	成功	刷新时间: 正常	•				
272	,857 +0.201 344	成功	*100 zz.					
273	,750 +0.201 377	成功 当	則利用率:		8	2.1/%)	
274	,624 +0.200 563	成功	当前速率: 4526 帧/	秒		/		

图 5.79 高优先级负载压力测试

步骤 2: 打开 CANScope 的报文界面和"总线负载率"界面,发送 ID 填入 7FFH, DLC 为 8,发送次数为无限。分别调整重复次数,使总线负载率为 10%、30%、50%、70%、90%。使 用 ID 筛选的方式,对应观察被测 DUT 的应用数据是否间隔时间是否正常。如图 5.80 所示。为 筛选出被测 DUT 发出的 181H 的 ID,通过增量时间的方式观察是否有异常。

	<i>🖻</i> 🔒	1	801	. →	-	1.00	-	-	1								CANSco	pe-运行中
	开始	高级	报文	测试		共享 波形		眼医	示波器	F	ORT板							
		波特率	250 Kbps		Ŧ	📄 自定义波特	÷/	类型	标准数据帧		数据 8C	08 00 0	0 00 00 00 00	发送间隔	1 ms			
	U	采样比	100:1		Ŧ	☑ 总线应答		帧ID	7FF		重复次数	200		递增选择	不递增	-	\geq	
升启	停止	采样率	20 M			侦测波特率		DLC	8		发送次数	无限	•				停止	重谱
控	制			采集设置	t								发送帧	4				

图 5.80 低优先级负载压力测试

试验评定:依据 GMW14242,测试结果为 DUT 在 10%、30%、50%、70%、90%负载下均可以 正常工作,并且不会因为负载过高而死机,则通过测试。

5.3 CAN 应用层一致性测试

试验前需要确认 CANScope-Pro 供电工作正常, DUT(被测设备)没有安装终端电阻,使能总线应答,如图 5.60 图 5.1 所示。每个测试选项都要先启动 CANScope 再启动 DUT(被测设备),保证测试过程完整性。下文中的试验原理均为标准文档的截图与摘抄。

图 5.81 使能总线应答方式

5.3.1 报文发送周期测试

试验目的:测试被测 DUT 期性报文的间隔时间是否小于允许误差。

试验依据: DS301,要求在DUT周期性报文间隔时间误差小于20%。

试验原理:由测试设备触发被测 DUT 进入周期性发送状态,测试设备接收1分钟报文后,进行统计,查看是否有间隔超过20%的误差的报文。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。如图 5.82 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.82 报文发送周期测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。**控制 DUT 能发出各种预期的报文。**

步骤 2: 接收 DUT 的周期性报文 1 分钟,然后点击停止 CANScope,打开"报文周期"的插件,如图 5.83 所示,选择误差率为 20%,点击开始统计。

查找 帧统计	帧比较 流量分	析 总线利用率 触发	发送 协议解析 脚本鄉	耀 传输延时 共模干	北 边沿统计	
			工具			
【周期统计	-	-		diameter (100	
如D	次数	平均周期	最长周期	最短周期	标准差	
⊳ 080 H	23/1566	98.56734ms	102.23225ms	525.5us	11.7492831ms	
⊳ 200 H	22/1565	98.63036ms	102.2285ms	525.25us	11.4873457ms	
⊳ 231 H	23/1566	98.56745ms	102.2305ms	525.5us	11.7514043ms	
331 H	0/1524	99.99643ms	102.8675ms	97.14375ms	454.616us	
332 H	0/1524	99.99652ms	102.71075ms	97.30025ms	411.003us	
333 H	0/1524	99.99652ms	102.604ms	97.407ms	400.507us	
⊳ 606 H	5/6	352.0998ms	1.030908s	5.55825ms	384.488451ms	
⊳ 607 H	204/205	755.14831ms	1.0314145s	3.767ms	274.130238ms	
⊳ 608 H	204/205	751.41332ms	1.03259125s	3.119ms	281.134749ms	
⊳ 609 H	204/205	751.41583ms	1.0320685s	3.64ms	280.653106ms	
⊳ 60A H	204/205	751.41835ms	1.0315555s	4.151ms	280.167817ms	
⊳ 60B H	204/205	751.42084ms	1.03100425s	4.65775ms	279.68358ms	
▷ 60C H	204/205	751.42349ms	1.03048525s	5.169ms	279.184876ms	
⊳ 60D H	204/205	751.42599ms	1.02995825s	5.67775ms	278.688058ms	
⊳ 60E H	8009/80.	. 19.40885ms	1.0294515s	275.75us	126.399743ms	
⊳ 701 H	21/1564	98.69347ms	103.00875ms	124.5us	11.2330592ms	

图 5.83 报文周期插件

步骤 3: 对于周期性报文的误差进行分析。如 080H 这个 ID 的周期报文,发送 1566 次中, 平均周期 98.56ms,有 23 次超过了 20%的误差。可展开查看细节。如图 5.84 所示。

帧ID		次数	平均周期	最长周期	最短周期	标准差	-
⊿ 080 H		23/1566	98.56734ms	102.23225ms	525.5us	11.7492831ms	
- 序号	(7817)	1	529.5us				
_ 序号	(7827)	1	1.6005ms				Ξ
- 序号	} (7832)	1	780.5us				
- 序号	6(7843)	1	2.56925ms				
- 序号	} (7848)	1	778.5us				
- 序号	3(7851)	1	527.5us				
- 序号] (7857)	1	1.035ms				
- 序号	ਫ ੋ(7860)	1	531.5us				
- 序号] (7866)	1	1.027ms				
- 序号	} (7869)	1	525.5us				
- 序号	3 (7874)	1	776.5us				
- 序号	3(7878)	1	782us				
- 序号	3(7883)	1	776.5us				
- 序号	3 (7886)	1	527.25us				
_ 序号	3(7898)	1	2.574ms				-

图 5.84 展开观察周期异常的报文

试验评定: DS301, DUT 的周期性报文间隔时间误差小于 20%, 则通过测试。

5.3.2 BusOff 后的处理

试验目的:测试被测 DUT 在 BusOff(总线关闭)后的恢复时间。

试验依据: GMW14242,要求在DUT在Busoff后快恢复时间符合要求。如果错误持续,将在10次快恢复后执行慢恢复时间,如表 5.11所示。

恢复类型	测试参数
快恢复	最快 128×11bit 的时间
	最慢 128×133bit 的时间
慢恢复	160ms
	高速 CAN >500kbps
	1s
	中速 CAN 250-100kbps
	3.78
	低速 CAN <83.3kbps

表 5.11 BusOff 后的恢复时间

试验原理:由测试设备触发 DUT 发送报文,然后制造干扰(CANH 对地短路、破坏帧内容等), 导致 DUT 的报文发送失败,在导致连续 32 次发送失败后,DUT 即进入 BusOff 状态。测量到 下一次 DUT 发送报文的时间间隔即为 BusOff 后的恢复时间。

试验接线:

本测试使用 CANScope-Pro 和 CANScope-StressZ。**需要 DUT 上电后,初始化控制器后,发送 CAN 报文或者通过 CANScope 触发 DUT 发送报文。CANScope 勾选总线应答。**如图 5.85 所示,进行测试连接。使能 CANScope-StressZ 的 RHL 为 60 欧。

图 5.85 BusOff 后的处理测试连接

试验步骤:

步骤 1: 启动 CANScope-Pro,将 RHL 调节为 60 欧,设置好和被测 DUT 相同的波特率, 点击开启。控制 DUT 能发出各种预期的报文,并且能被 CANScope-Pro 收到。

步骤 2: 打开 CANScope-Pro 的"错误与干扰",将"接受干扰"使能,并且将"持续时间"

改为100,点击"应用"。如图 5.86 所示。此时即可实现较高的干扰强度,保证每一个 DUT 发出的报文都可以被干扰。

→ 2010 10 10 10 10 10 10 10 10 10 10 10 10	CANScope- 銀图 示波器 PORT版
■件标记 错误与干扰 计件段图 对称性测试 采样点测试 位竞奋忍度测试	CAN 测试仪
错误与干扰	
□ 自定义发送波特率 1Mbps ▼	□ 启用发送错误帧 帧ID填充错误[4:0] ····
□ 启用发送干扰	☑ 启用接收干扰
时间范围:干扰信号的持续时间与位宽的百分比 偏移时间 0 持续时间 10 0% 20% 40% 60% 80% 100%	时间范围:干扰信号的持续时间与位宽的百分比 偏移时间 0 持续时间 100 0% 20% 40% 60% 80% 100%
指定需要干扰哪些位(对应位为1),在这些位的"时间 范围"内干扰	满足匹配条件后,在指定"干扰位置"的"时间范围"内干扰
□ ▲山口 土井 00000000 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	帧类型匹配 标准数据帧 ▼
DLC干扰 0 记罢	道····································
□ 数据干扰 00 00 00 00 00 00 00 00 00 00 00 00 00	□数据匹配 00 00 00 00 00 00 00 00 00 00 00 00 00
	掩码 00 00 00 00 00 00 00 00 00
	 巴部成功后, 从下 位开始计算, 指定要干扰多少位 干扰位数 ²⁰ (仅对现代性位6逻辑1)有效
	应用 取消

图 5.86 启用接收干扰

步骤 2: 干扰一段时间后,点击报文界面的"停止"。打开 CANScope-Pro 的"流量分析", 找到某一个连续 32 个干扰结果,如图 5.87 所示。

81	CAN报文 ×	(2) 网络	共享 🛛 🖸	AN波形 🕕 C	AN眼图 (■ CAN	示波器								
G	1 16 76 76	* 🔊	🖹 🛯 🛋 自調	动量程 😂 自动流	發屏 🛜 清除过滤	🖌 清除列表 🔍) (
序	룩	时间		状态	方向	帧类型	数据长周	ŧ	帧ID	帧数据		事件标记		注释
在	此处输入… 了	在此处输	认文字 💡	7 在此处输入…	▼ 在此处输入	▼ 在此处输入	🝸 在此处新	礼 7	在此处输入 ?	在此处输入文字	Y	在此处输入文字	Y	在此处输入
m	5,425	+0.000 1	14	定界符格式	 接收									
100	5,426	+0.000 1	14	DLC填充错误	接收									
100	5,427	+0.000 1	14	定界符格式	接收									
100	5,428	+0.000 1	14	DLC填充错误	接收									
100	5,429	+0.000 1	14	定界符格式	接收									
100	5,430	+0.000 1	14	DLC填充错误	接收									
100	5,431	+0.000 1	14	定界符格式	接收									
w	5,432	+0.000 1	14	DLC填充错误	接收									
100	5,433	+0.000 1	13	定界符格式	接收									
10	5,434	+0.000 1	14	DLC填充错误	接收									
10	5,435	+0.000 1	14	定界符格式	接收									
1	5,436	+0.000 1	14	DLC填充错误	接收									
C	🖣 🖑 🖉 👘	1 III	ie e i	3 🔁 🛃 5.61	83s									
			5.6185	• 5.61	9s 5.619	95s 5.	.62s	5.6205s	5.621s	5.6215s		5.622s 5	.6225s	5.
	CAN报文			DL 定	. DL 定 D 定 (ж <mark>д</mark> р д	DL, 定 DL, 定.	D 定	数 数 数 数.	教 散 数 数	數数	教 教 教 教.	. \$ \$ \$	t

图 5.87 流量分析干扰结果

然后将流量分析界面缩小,测量两个干扰团之间的时间间隔,即为 BusOff 后的恢复时间。 如图 5.88 所示。

				<u>M1</u>	5.693495145-5.62	2270364s=70.7915ms(14.1 HZ)	
4s	5.56s	5.58s	5.6s	5.62s	5.64s	0.005 0.005	5.7 s
					1	<mark></mark>	

图 5.88 BusOff 后的恢复时间

试验评定: GMW14242, DUT 在 Busoff 后快恢复时间符合要求。如果错误持续,将在 10 次快恢复后执行慢恢复时间,则通过测试。

6. 免责声明

本手册所陈述的产品文本及相关软件版权均属广州致远电子股份有限公司所有,其产权 受国家法律绝对保护,未经本公司授权,其它公司、单位、代理商及个人不得非法使用和拷 贝,否则将受到国家法律的严厉制裁。

您若需要我公司产品及相关信息,请及时与我们联系,我们将热情接待。广州致远电子 股份有限公司保留在任何时候修订本用户手册且不需通知的权利。

CANScope-Pro分析仪集海量存储示波器、网络分析仪、误码率分 析仪、协议分析仪及可靠性测试工具于一身,并把各种仪器有机的整 合和关连;重新定义CAN总线的开发测试方法,可对CAN网络通信正 确性、可靠性、合理性进行多角度全方位的评估;帮助用户快速定位 故障,解决CAN总线应用的各种问题,是CAN总线开发测试的终极工 具。

CAN全自动测试软件:基于汽车电子、轨道交通、航空航天、船舶电 子等行业的要求,集成信号测试、故障定位、压力可靠性测试,一站 式解决CAN的所有问题。

CANScope-Pro总线协议分析仪

- 多层次分析.CAN.总线,从物理层、协议层、应用层对CAN总 线进行全方位的测量与分析;
- •13000帧超长波形存储能力;
- 可靠的报文记录、分析功能,全面把握报文信息;
- 带FFT功能的示波器功能,快速定位总线干扰频率;
- 实用的报文重播功能,精确重现总线错误;
- 支持硬件眼图,快速评估总线质量;
- 支持软件眼图,准确定位问题节点;
- 支持网络共享功能,远程解决问题轻松实现;
- 实用的事件标记功能,最大限度存储用户所关心的波形;
- •强大的总线干扰功能,有效测试总线抗干扰能力。

18		结果 备注	设备要求	○ 对正负电源或地短路测试
	全部時は 1.1年月は 2.2次月前は 2.2次月前は 2.2次月前は 3.8年秋日年期は 5.8年秋日年期は 5.8年秋日年期は 5.8年秋日年期は 7.1年末年長期は 1.1株月大秋日の時は 1.1株月大秋日の時は 1.1た大秋日の時は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日期は 1.2.2年秋日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日		StdlPro StdlPro StdlPro StdlPro StdlPro StdlPro StdlPro StdlPro StdlPro StdlPro Pro Stre	平田田市中市町町町の 10 ●林田田田市 10 ●林田田市 CAN-H田田市 CAN-H田田市 CAN-H田田市
F	 13. 总线新路测试 14. 容抗增加压力测试 		Pro+Stre Pro+Stre	
F	 15. 总线网络阻抗测试 16. 对正负电源或地短路测 17. 修練用調查化圧力測试 		Pro+Stre Pro+Stre Pro+Stre	干扰类型 洗提CAN-H和CAN-L连接的串源干扰运动

打造民族品牌,树立行业标杆

01010101010101010101010101010 910101010 🏂 PA6000 0 NUTOTOTOTOTOTOTOTOTO 01010101 Esc nin Direct Single 0101010101010 Default -Display & Se Witten Cycle Motor 01010101010 Numeric Harrorik Intograf Rom Vector Flexer 0101010101010 FS 0101010 SQ20 Fu/Filit) Benerit UUP Maa 1 Free Filer Harris Corner Haster Haster AVG Nul Specie Shift Store Scaling Input links Handler Serting Touch 完全符合标准 IEC61000-4-7

高精度 精确呈现输入信号

1111 1111

- 基本功率精度: 0.01%
- ■测量带宽: DC、0.1Hz~5MHz
- 7相精确同步测量

支持标准

- 支持VDE-AR-N 4105标准 支持NBT 32004-2013标准
- 支持IEC61000-3-2标准 支持IEC61000-3-3标准
- 支持IEC61000-4-7标准 支持IEC61000-4-15标准

完善功能 高效测量解决方案

- ■所有通道同时支持功率测量、FFT、谐波、闪变以及波形分析功能
- ■支持最高256次谐波分析测量
- ■支持最高4000个周期分析功能
- 内置高达60GB存储空间,连续测量存储时间最长达1万小时
- 支持电机效率评估,多台仪器间的同步测量,提供更高效的测量解 决方案

卓越的可操作性 人性化设计、简便、直观

- 12.1英寸1280×800高分辨率显示
- 人性化的操作设计理念,同时支持按键、触摸、键盘和鼠标操作
- 丰富的通信接口: GPIB、USB Device(480Mbps)、 Ethernet(1000Mbps)
- 支持远程操控,随时随地测量

主要功能

▼ 监视、捕捉电源异常

- 冲击电流
- 电压暂升/暂降
- ■频率异常
- 三相不平衡
- ■瞬时过电压
- ■短时中断

☑ 测量并记录

- ■电压/电流
- ■谐波/间谐波
- ■谐波子组/高次谐波
- 功率/功率因数
- ■波动/闪变(长闪变与短闪变)
- ■有功/无功/视在功率
- ■负载变化(趋势图/表格图显示)

E6000是一款便携性极强的电能质量分析仪,电压、电流的测量精度高达0.1%,最多可同时 记录461项参数,支持多品牌电流互感器,支持定时记录与全录波功能。数据存储空间高达8G, 确保3s统计间隔下,可连续记录120小时数据,USB传输速度高达3.9Mb/s,自定义生成符合国标 的报表。当电力设备发生故障时,能迅速定位故障是否由电能质量问题引起,并找出电能质量问题 的根本原因,广泛应用于电力故障分析与供电质量评估这两大应用领域。

资质认证

开普实验室			
产品型号使用证书	していた しいた していた していた していた していた していた していた し していた し し し し し し しい	★ 金验证书	in the second seco
	广东电科院	1000000000000000000000000000000000000	
IEC 61850组网	0.1%精确度	^{素時終進} IEC61000-4-30 A	多台设备同步采荐
E8000单回路在线监测装置	E8000多回路在线监测装置	PQ3000便携式多回路电能质量:	分析仪 E6100便携式电能质量分析仪